Cargando…
Short-term forecasting of COVID-19 using support vector regression: An application using Zimbabwean data
BACKGROUND: This study aims to show that including pairwise hierarchical interactions of covariates and combining forecasts from individual models improves prediction accuracy. METHODS: The least absolute shrinkage and selection operator via hierarchical pairwise interaction is used in selecting var...
Autores principales: | Shoko, Claris, Sigauke, Caston |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060190/ https://www.ncbi.nlm.nih.gov/pubmed/37001592 http://dx.doi.org/10.1016/j.ajic.2023.03.010 |
Ejemplares similares
-
Short-term forecasting of confirmed daily COVID-19 cases in the Southern African Development Community region
por: Shoko, Claris, et al.
Publicado: (2022) -
Modelling average maximum daily temperature using r largest order statistics: An application to South African data
por: Nemukula, Murendeni M., et al.
Publicado: (2018) -
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
por: Hu, Zhongyi, et al.
Publicado: (2013) -
Financial time series forecasting using twin support vector regression
por: Gupta, Deepak, et al.
Publicado: (2019) -
Electricity Consumption Forecasting using Support Vector Regression with the Mixture Maximum Correntropy Criterion
por: Duan, Jiandong, et al.
Publicado: (2019)