Cargando…
The effects and mechanisms of the anti-COVID-19 traditional Chinese medicine, Dehydroandrographolide from Andrographis paniculata (Burm.f.) Wall, on acute lung injury by the inhibition of NLRP3-mediated pyroptosis
BACKGROUND: Dehydroandrographolide (Deh) from Andrographis paniculata (Burm.f.) Wall has strong anti-inflammatory and antioxidant activities. PURPOSE: To explore the role of Deh in acute lung injury (ALI) of coronavirus disease 19 (COVID-19) and its inflammatory molecular mechanism. METHODS: Liposac...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier GmbH.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060206/ https://www.ncbi.nlm.nih.gov/pubmed/37084628 http://dx.doi.org/10.1016/j.phymed.2023.154753 |
Sumario: | BACKGROUND: Dehydroandrographolide (Deh) from Andrographis paniculata (Burm.f.) Wall has strong anti-inflammatory and antioxidant activities. PURPOSE: To explore the role of Deh in acute lung injury (ALI) of coronavirus disease 19 (COVID-19) and its inflammatory molecular mechanism. METHODS: Liposaccharide (LPS) was injected into a C57BL/6 mouse model of ALI, and LPS + adenosine triphosphate (ATP) was used to stimulate BMDMs in an in vitro model of ALI. RESULTS: In an in vivo and in vitro model of ALI, Deh considerably reduced inflammation and oxidative stress by inhibiting NLRP3-mediated pyroptosis and attenuated mitochondrial damage to suppress NLRP3-mediated pyroptosis through the suppression of ROS production by inhibiting the Akt/Nrf2 pathway. Deh inhibited the interaction between Akt at T308 and PDPK1 at S549 to promote Akt protein phosphorylation. Deh directly targeted PDPK1 protein and accelerated PDPK1 ubiquitination. 91-GLY, 111-LYS, 126-TYR, 162-ALA, 205-ASP and 223-ASP may be the reason for the interaction between PDPK1 and Deh. CONCLUSION: Deh from Andrographis paniculata (Burm.f.) Wall presented NLRP3-mediated pyroptosis in a model of ALI through ROS-induced mitochondrial damage through inhibition of the Akt/Nrf2 pathway by PDPK1 ubiquitination. Therefore, it can be concluded that Deh may be a potential therapeutic drug for the treatment of ALI in COVID-19 or other respiratory diseases. |
---|