Cargando…
Effect of oxidation at an elevated temperature on the evolution of phases, microstructure, and properties of the oxide films formed on the surface of TiZr
This study examined the evolution of the microstructure, microhardness, corrosion resistance, and selective leaching properties of oxide films formed on the surface of a Ti–50Zr (%) alloy during heat treatment at 600 °C for various time intervals. According to our experimental results, the growth an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060226/ https://www.ncbi.nlm.nih.gov/pubmed/36991076 http://dx.doi.org/10.1038/s41598-023-32377-y |
Sumario: | This study examined the evolution of the microstructure, microhardness, corrosion resistance, and selective leaching properties of oxide films formed on the surface of a Ti–50Zr (%) alloy during heat treatment at 600 °C for various time intervals. According to our experimental results, the growth and evolution of oxide films can be divided into three stages. In stage I (heat treatment for less than 2 min), ZrO(2) was first formed on the surface of the TiZr alloy, which slightly improved its corrosion resistance. In stage II (heat treatment for 2–10 min), the initially generated ZrO(2) is gradually transformed into ZrTiO(4) from the top to the bottom of the surface layer. The formation of ZrTiO(4) significantly improves the microhardness and corrosion resistance of the alloy. In stage III (heat treatment for more than 10 min), microcracks appeared and propagated on the surface of the ZrTiO(4) film, deteriorating the surface properties of the alloy. The ZrTiO(4) began to peel off after heat treatment for more than 60 min. The untreated and heat-treated TiZr alloys exhibited excellent selective leaching properties in Ringer’s solution, whereas a trace amount of suspended ZrTiO(4) oxide particles formed in the solution after soaking the 60 min heat-treated TiZr alloy for 120 days. Surface modification of the TiZr alloy by generating an intact ZrTiO(4) oxide film effectively improved its microhardness and corrosion resistance; however, oxidation should be performed appropriately to obtain materials with optimal properties for biomedical applications. |
---|