Cargando…

Experimental study on tilting deformation and a new method for landslide prediction with retaining-wall locked segment

The destruction of the locked-segment type landslide is often accompanied by the destruction of the locked segment with cumulative effects. Investigating the failure mode and instability mechanism of locked-segment type landslides is crucial. The study uses physical models to examine the evolution o...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Han-dong, Liu, Jing-jing, Chen, Jia-xing, Guo, Zhi-fei, Qiu, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060239/
https://www.ncbi.nlm.nih.gov/pubmed/36991041
http://dx.doi.org/10.1038/s41598-023-32477-9
Descripción
Sumario:The destruction of the locked-segment type landslide is often accompanied by the destruction of the locked segment with cumulative effects. Investigating the failure mode and instability mechanism of locked-segment type landslides is crucial. The study uses physical models to examine the evolution of locked-segment type landslides with retaining-walls. It utilizes a variety of instruments (tilt sensors, micro earth pressure sensors, pore water pressure sensors, strain gauges, and others) to conduct physical model tests of locked-segment type landslide with retaining-wall and to reveal the tilting deformation and evolution mechanism of retaining-wall locked landslide under the condition of rainfall. The results showed that the regularity of tilting rate, tilting acceleration, strain, and stress change in the retaining-wall locked segment is consistent with the landslide evolution process, indicating that tilting deformation can be used as the criterion of landslide instability and that the locked segment plays a vital role in controlling the landslide stability. The tertiary creep stages of tilting deformation are divided into initial, medium, and high tertiary creep stages using an improved angle tangent method. This establishes the failure criterion for locked-segment type landslides with tilting angles of 0.34°, 1.89°, and 4.38°. In addition, the tilting deformation curve of a locked-segment type landslide with a retaining-wall is utilized to predict the landslide instability by the reciprocal velocity method.