Cargando…
Using machine learning with intensive longitudinal data to predict depression and suicidal ideation among medical interns over time
BACKGROUND: Use of intensive longitudinal methods (e.g. ecological momentary assessment, passive sensing) and machine learning (ML) models to predict risk for depression and suicide has increased in recent years. However, these studies often vary considerably in length, ML methods used, and sources...
Autores principales: | Horwitz, Adam G., Kentopp, Shane D., Cleary, Jennifer, Ross, Katherine, Wu, Zhenke, Sen, Srijan, Czyz, Ewa K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060441/ https://www.ncbi.nlm.nih.gov/pubmed/36177889 http://dx.doi.org/10.1017/S0033291722003014 |
Ejemplares similares
-
Machine learning discovery of longitudinal patterns of depression and suicidal ideation
por: Gong, Jue, et al.
Publicado: (2019) -
Plasma VEGF Concentrations and Ketamine's Effects on Suicidal Ideation in Depression With Suicidal Ideation
por: Zheng, Wei, et al.
Publicado: (2022) -
A Caveat to Using Wearable Sensor Data for COVID-19 Detection: The Role of Behavioral Change after Receipt of Test Results
por: Cleary, Jennifer L., et al.
Publicado: (2021) -
A caveat to using wearable sensor data for COVID-19 detection: The role of behavioral change after receipt of test results
por: Cleary, Jennifer L., et al.
Publicado: (2022) -
Systematic review and meta-analysis of depression, anxiety, and suicidal ideation among Ph.D. students
por: Satinsky, Emily N., et al.
Publicado: (2021)