Cargando…
A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions
Introduction: The Bouguer-Lambert-Beer law is widely used as the fundamental equation for quantification in absorption spectroscopy. However, deviations from the Bouguer-Lambert-Beer law have also been observed, such as chemical deviation and light scattering effect. While it has been proven and sho...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060552/ https://www.ncbi.nlm.nih.gov/pubmed/37008024 http://dx.doi.org/10.3389/fbioe.2023.1116735 |
_version_ | 1785017119001280512 |
---|---|
author | Yeh, Yen-Cheng Haasdonk, Bernard Schmid-Staiger, Ulrike Stier, Matthias Tovar, Günter E. M. |
author_facet | Yeh, Yen-Cheng Haasdonk, Bernard Schmid-Staiger, Ulrike Stier, Matthias Tovar, Günter E. M. |
author_sort | Yeh, Yen-Cheng |
collection | PubMed |
description | Introduction: The Bouguer-Lambert-Beer law is widely used as the fundamental equation for quantification in absorption spectroscopy. However, deviations from the Bouguer-Lambert-Beer law have also been observed, such as chemical deviation and light scattering effect. While it has been proven and shown that the Bouguer-Lambert-Beer law is valid only under very restricted limitations, there are only a few alternatives of analytical models to this law. Based on the observation in the experiments, we propose a novel model to solve the problem of chemical deviation and light scattering effect. Methods: To test the proposed model, a systematic verification was conducted using potassium dichromate solutions and two types of microalgae suspensions with varying concentrations and path lengths. Results: Our proposed model demonstrated excellent performance, with a correlation coefficient ( [Formula: see text] ) exceeding 0.995 for all tested materials, significantly surpassing the Bouguer-Lambert-Beer law, which had an [Formula: see text] as low as 0.94. Our results confirm that the absorbance of pure pigment solutions follows the Bouguer-Lambert-Beer law, while the microalgae suspensions do not due to the light scattering effect. We also show that this scattering effect leads to huge deviations for the commonly used linear scaling of the spectra, and we provide a better solution based on the proposed model. Discussion: This work provides a powerful tool for chemical analysis and especially for the quantification of microorganisms, such as the concentration of biomass or intracellular biomolecules. Not only the high accuracy but also the simplicity of the model makes it a practical alternative to the existing Bouguer-Lambert-Beer law. |
format | Online Article Text |
id | pubmed-10060552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100605522023-03-31 A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions Yeh, Yen-Cheng Haasdonk, Bernard Schmid-Staiger, Ulrike Stier, Matthias Tovar, Günter E. M. Front Bioeng Biotechnol Bioengineering and Biotechnology Introduction: The Bouguer-Lambert-Beer law is widely used as the fundamental equation for quantification in absorption spectroscopy. However, deviations from the Bouguer-Lambert-Beer law have also been observed, such as chemical deviation and light scattering effect. While it has been proven and shown that the Bouguer-Lambert-Beer law is valid only under very restricted limitations, there are only a few alternatives of analytical models to this law. Based on the observation in the experiments, we propose a novel model to solve the problem of chemical deviation and light scattering effect. Methods: To test the proposed model, a systematic verification was conducted using potassium dichromate solutions and two types of microalgae suspensions with varying concentrations and path lengths. Results: Our proposed model demonstrated excellent performance, with a correlation coefficient ( [Formula: see text] ) exceeding 0.995 for all tested materials, significantly surpassing the Bouguer-Lambert-Beer law, which had an [Formula: see text] as low as 0.94. Our results confirm that the absorbance of pure pigment solutions follows the Bouguer-Lambert-Beer law, while the microalgae suspensions do not due to the light scattering effect. We also show that this scattering effect leads to huge deviations for the commonly used linear scaling of the spectra, and we provide a better solution based on the proposed model. Discussion: This work provides a powerful tool for chemical analysis and especially for the quantification of microorganisms, such as the concentration of biomass or intracellular biomolecules. Not only the high accuracy but also the simplicity of the model makes it a practical alternative to the existing Bouguer-Lambert-Beer law. Frontiers Media S.A. 2023-03-16 /pmc/articles/PMC10060552/ /pubmed/37008024 http://dx.doi.org/10.3389/fbioe.2023.1116735 Text en Copyright © 2023 Yeh, Haasdonk, Schmid-Staiger, Stier and Tovar. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Bioengineering and Biotechnology Yeh, Yen-Cheng Haasdonk, Bernard Schmid-Staiger, Ulrike Stier, Matthias Tovar, Günter E. M. A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions |
title | A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions |
title_full | A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions |
title_fullStr | A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions |
title_full_unstemmed | A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions |
title_short | A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions |
title_sort | novel model extended from the bouguer-lambert-beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions |
topic | Bioengineering and Biotechnology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060552/ https://www.ncbi.nlm.nih.gov/pubmed/37008024 http://dx.doi.org/10.3389/fbioe.2023.1116735 |
work_keys_str_mv | AT yehyencheng anovelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT haasdonkbernard anovelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT schmidstaigerulrike anovelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT stiermatthias anovelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT tovargunterem anovelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT yehyencheng novelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT haasdonkbernard novelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT schmidstaigerulrike novelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT stiermatthias novelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions AT tovargunterem novelmodelextendedfromthebouguerlambertbeerlawcandescribethenonlinearabsorbanceofpotassiumdichromatesolutionsandmicroalgaesuspensions |