Cargando…
SumGNN: multi-typed drug interaction prediction via efficient knowledge graph summarization
MOTIVATION: Thanks to the increasing availability of drug–drug interactions (DDI) datasets and large biomedical knowledge graphs (KGs), accurate detection of adverse DDI using machine learning models becomes possible. However, it remains largely an open problem how to effectively utilize large and n...
Autores principales: | Yu, Yue, Huang, Kexin, Zhang, Chao, Glass, Lucas M, Sun, Jimeng, Xiao, Cao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10060701/ https://www.ncbi.nlm.nih.gov/pubmed/33769494 http://dx.doi.org/10.1093/bioinformatics/btab207 |
Ejemplares similares
-
SkipGNN: predicting molecular interactions with skip-graph networks
por: Huang, Kexin, et al.
Publicado: (2020) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
ESA-FedGNN: Efficient secure aggregation for federated graph neural networks
por: Liu, Yanjun, et al.
Publicado: (2023) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
SmileGNN: Drug–Drug Interaction Prediction Based on the SMILES and Graph Neural Network
por: Han, Xueting, et al.
Publicado: (2022)