Cargando…
Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance
INTRODUCTION: In brain-computer interfaces (BCI) research, recording data is time-consuming and expensive, which limits access to big datasets. This may influence the BCI system performance as machine learning methods depend strongly on the training dataset size. Important questions arise: taking in...
Autores principales: | Śliwowski, Maciej, Martin, Matthieu, Souloumiac, Antoine, Blanchart, Pierre, Aksenova, Tetiana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061076/ https://www.ncbi.nlm.nih.gov/pubmed/37007675 http://dx.doi.org/10.3389/fnhum.2023.1111645 |
Ejemplares similares
-
Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording
por: Eliseyev, Andrey, et al.
Publicado: (2016) -
Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI
por: Moly, Alexandre, et al.
Publicado: (2023) -
Editorial: Sensorimotor decoding: characterization and modeling for rehabilitation and assistive technologies
por: Pais-Vieira, Miguel, et al.
Publicado: (2023) -
Unsupervised adaptation of an ECoG based brain–computer interface using neural correlates of task performance
por: Rouanne, Vincent, et al.
Publicado: (2022) -
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020)