Cargando…

A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management

[Image: see text] Drilling boreholes for the exploration of groundwater incurs high cost with potential risk of failures. However, borehole drilling should only be done in regions with a high probability of faster and easier access to water-bearing strata, so that groundwater resources can be effect...

Descripción completa

Detalles Bibliográficos
Autores principales: Khan, Anam Nawaz, Kim, Bong Wan, Rizwan, Atif, Ahmad, Rashid, Iqbal, Naeem, Kim, Kwangsoo, Kim, Do Hyeun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061606/
https://www.ncbi.nlm.nih.gov/pubmed/37008158
http://dx.doi.org/10.1021/acsomega.2c06854
_version_ 1785017324249546752
author Khan, Anam Nawaz
Kim, Bong Wan
Rizwan, Atif
Ahmad, Rashid
Iqbal, Naeem
Kim, Kwangsoo
Kim, Do Hyeun
author_facet Khan, Anam Nawaz
Kim, Bong Wan
Rizwan, Atif
Ahmad, Rashid
Iqbal, Naeem
Kim, Kwangsoo
Kim, Do Hyeun
author_sort Khan, Anam Nawaz
collection PubMed
description [Image: see text] Drilling boreholes for the exploration of groundwater incurs high cost with potential risk of failures. However, borehole drilling should only be done in regions with a high probability of faster and easier access to water-bearing strata, so that groundwater resources can be effectively managed. However, regional strati-graphic uncertainties drive the decision of the optimal drilling location search. Unfortunately, due to the unavailability of a robust solution, most contemporary solutions rely on physical testing methods that are resource intensive. In this regard, a pilot study is conducted to determine the optimal borehole drilling location using a predictive optimization technique that takes strati-graphic uncertainties into account. The study is conducted in a localized region of the Republic of Korea using a real borehole data set. In this study we proposed an enhanced Firefly optimization algorithm based on an inertia weight approach to find an optimal location. The results of the classification and prediction model serve as an input to the optimization model to implement a well-crafted objective function. For predictive modeling a deep learning based chained multioutput prediction model is developed to predict groundwater-level and drilling depth. For classification of soil color and land-layer a weighted voting ensemble classification model based on Support Vector Machines, Gaussian Naïve Bayes, Random Forest, and Gradient Boosted Machine is developed. For weighted voting, an optimal set of weights is determined using a novel hybrid optimization algorithm. Experimental results validate the effectiveness of the proposed strategy. The proposed classification model achieved an accuracy of 93.45% and 95.34% for soil-color and land-layer, respectively. While the mean absolute error achieved by proposed prediction model for groundwater level and drilling depth is 2.89% and 3.11%, respectively. It is found that the proposed predictive optimization framework can adaptively determine the optimal borehole drilling locations for high strati-graphic uncertainty regions. The findings of the proposed study provide an opportunity to the drilling industry and groundwater boards to achieve sustainable resource management and optimal drilling performance.
format Online
Article
Text
id pubmed-10061606
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-100616062023-03-31 A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management Khan, Anam Nawaz Kim, Bong Wan Rizwan, Atif Ahmad, Rashid Iqbal, Naeem Kim, Kwangsoo Kim, Do Hyeun ACS Omega [Image: see text] Drilling boreholes for the exploration of groundwater incurs high cost with potential risk of failures. However, borehole drilling should only be done in regions with a high probability of faster and easier access to water-bearing strata, so that groundwater resources can be effectively managed. However, regional strati-graphic uncertainties drive the decision of the optimal drilling location search. Unfortunately, due to the unavailability of a robust solution, most contemporary solutions rely on physical testing methods that are resource intensive. In this regard, a pilot study is conducted to determine the optimal borehole drilling location using a predictive optimization technique that takes strati-graphic uncertainties into account. The study is conducted in a localized region of the Republic of Korea using a real borehole data set. In this study we proposed an enhanced Firefly optimization algorithm based on an inertia weight approach to find an optimal location. The results of the classification and prediction model serve as an input to the optimization model to implement a well-crafted objective function. For predictive modeling a deep learning based chained multioutput prediction model is developed to predict groundwater-level and drilling depth. For classification of soil color and land-layer a weighted voting ensemble classification model based on Support Vector Machines, Gaussian Naïve Bayes, Random Forest, and Gradient Boosted Machine is developed. For weighted voting, an optimal set of weights is determined using a novel hybrid optimization algorithm. Experimental results validate the effectiveness of the proposed strategy. The proposed classification model achieved an accuracy of 93.45% and 95.34% for soil-color and land-layer, respectively. While the mean absolute error achieved by proposed prediction model for groundwater level and drilling depth is 2.89% and 3.11%, respectively. It is found that the proposed predictive optimization framework can adaptively determine the optimal borehole drilling locations for high strati-graphic uncertainty regions. The findings of the proposed study provide an opportunity to the drilling industry and groundwater boards to achieve sustainable resource management and optimal drilling performance. American Chemical Society 2023-03-16 /pmc/articles/PMC10061606/ /pubmed/37008158 http://dx.doi.org/10.1021/acsomega.2c06854 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Khan, Anam Nawaz
Kim, Bong Wan
Rizwan, Atif
Ahmad, Rashid
Iqbal, Naeem
Kim, Kwangsoo
Kim, Do Hyeun
A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management
title A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management
title_full A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management
title_fullStr A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management
title_full_unstemmed A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management
title_short A New Method for Determination of Optimal Borehole Drilling Location Considering Drilling Cost Minimization and Sustainable Groundwater Management
title_sort new method for determination of optimal borehole drilling location considering drilling cost minimization and sustainable groundwater management
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061606/
https://www.ncbi.nlm.nih.gov/pubmed/37008158
http://dx.doi.org/10.1021/acsomega.2c06854
work_keys_str_mv AT khananamnawaz anewmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT kimbongwan anewmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT rizwanatif anewmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT ahmadrashid anewmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT iqbalnaeem anewmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT kimkwangsoo anewmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT kimdohyeun anewmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT khananamnawaz newmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT kimbongwan newmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT rizwanatif newmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT ahmadrashid newmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT iqbalnaeem newmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT kimkwangsoo newmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement
AT kimdohyeun newmethodfordeterminationofoptimalboreholedrillinglocationconsideringdrillingcostminimizationandsustainablegroundwatermanagement