Cargando…
Electrostatic Embedding of Machine Learning Potentials
[Image: see text] This work presents a variant of an electrostatic embedding scheme that allows the embedding of arbitrary machine learned potentials trained on molecular systems in vacuo. The scheme is based on physically motivated models of electronic density and polarizability, resulting in a gen...
Autor principal: | Zinovjev, Kirill |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061678/ https://www.ncbi.nlm.nih.gov/pubmed/36821513 http://dx.doi.org/10.1021/acs.jctc.2c00914 |
Ejemplares similares
-
Dielectric Properties
of Polymer Nanocomposite Interphases
Using Electrostatic Force Microscopy and Machine Learning
por: Gupta, Praveen, et al.
Publicado: (2023) -
High-fidelity and clean nanotransfer lithography using structure-embedded and electrostatic-adhesive carriers
por: Gan, Zhuofei, et al.
Publicado: (2023) -
Gait Stride Length Estimation Using Embedded Machine Learning
por: Verbiest, Joeri R., et al.
Publicado: (2023) -
Survey on graph embeddings and their applications to machine learning problems on graphs
por: Makarov, Ilya, et al.
Publicado: (2021) -
Photochemistry of Thymine in Protic Polar Nanomeric Droplets Using Electrostatic Embeding TD-DFT/MM
por: Huix-Rotllant, Miquel
Publicado: (2021)