Cargando…
Evolving fuzzy neural classifier that integrates uncertainty from human-expert feedback
Evolving fuzzy neural networks are models capable of solving complex problems in a wide variety of contexts. In general, the quality of the data evaluated by a model has a direct impact on the quality of the results. Some procedures can generate uncertainty during data collection, which can be ident...
Autores principales: | de Campos Souza, Paulo Vitor, Lughofer, Edwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10061807/ https://www.ncbi.nlm.nih.gov/pubmed/37009465 http://dx.doi.org/10.1007/s12530-022-09455-z |
Ejemplares similares
-
Identification of Heart Sounds with an Interpretable Evolving Fuzzy Neural Network
por: de Campos Souza, Paulo Vitor, et al.
Publicado: (2020) -
An Explainable Evolving Fuzzy Neural Network to Predict the k Barriers for Intrusion Detection Using a Wireless Sensor Network
por: de Campos Souza, Paulo Vitor, et al.
Publicado: (2022) -
Hybrid Model for Parkinson’s Disease Prediction
por: Guimarães, Augusto Junio, et al.
Publicado: (2020) -
An intelligent Bayesian hybrid approach to help autism diagnosis
por: Souza, Paulo Vitor de Campos, et al.
Publicado: (2021) -
New aggregation operators on group-based generalized intuitionistic fuzzy soft sets
por: Hayat, Khizar, et al.
Publicado: (2021)