Cargando…
Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions
Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062133/ https://www.ncbi.nlm.nih.gov/pubmed/36779761 http://dx.doi.org/10.1128/jvi.00038-23 |
_version_ | 1785017433735561216 |
---|---|
author | Keep, Sarah Dowgier, Giulia Lulla, Valeria Britton, Paul Oade, Michael Freimanis, Graham Tennakoon, Chandana Jonassen, Christine Monceyron Tengs, Torstein Bickerton, Erica |
author_facet | Keep, Sarah Dowgier, Giulia Lulla, Valeria Britton, Paul Oade, Michael Freimanis, Graham Tennakoon, Chandana Jonassen, Christine Monceyron Tengs, Torstein Bickerton, Erica |
author_sort | Keep, Sarah |
collection | PubMed |
description | Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3′ untranslated region (3′ UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3′ UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures. |
format | Online Article Text |
id | pubmed-10062133 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-100621332023-03-31 Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions Keep, Sarah Dowgier, Giulia Lulla, Valeria Britton, Paul Oade, Michael Freimanis, Graham Tennakoon, Chandana Jonassen, Christine Monceyron Tengs, Torstein Bickerton, Erica J Virol Genome Replication and Regulation of Viral Gene Expression Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3′ untranslated region (3′ UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3′ UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures. American Society for Microbiology 2023-02-13 /pmc/articles/PMC10062133/ /pubmed/36779761 http://dx.doi.org/10.1128/jvi.00038-23 Text en Copyright © 2023 Keep et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Genome Replication and Regulation of Viral Gene Expression Keep, Sarah Dowgier, Giulia Lulla, Valeria Britton, Paul Oade, Michael Freimanis, Graham Tennakoon, Chandana Jonassen, Christine Monceyron Tengs, Torstein Bickerton, Erica Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions |
title | Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions |
title_full | Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions |
title_fullStr | Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions |
title_full_unstemmed | Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions |
title_short | Deletion of the s2m RNA Structure in the Avian Coronavirus Infectious Bronchitis Virus and Human Astrovirus Results in Sequence Insertions |
title_sort | deletion of the s2m rna structure in the avian coronavirus infectious bronchitis virus and human astrovirus results in sequence insertions |
topic | Genome Replication and Regulation of Viral Gene Expression |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062133/ https://www.ncbi.nlm.nih.gov/pubmed/36779761 http://dx.doi.org/10.1128/jvi.00038-23 |
work_keys_str_mv | AT keepsarah deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT dowgiergiulia deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT lullavaleria deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT brittonpaul deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT oademichael deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT freimanisgraham deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT tennakoonchandana deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT jonassenchristinemonceyron deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT tengstorstein deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions AT bickertonerica deletionofthes2mrnastructureintheaviancoronavirusinfectiousbronchitisvirusandhumanastrovirusresultsinsequenceinsertions |