Cargando…
Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods
AIMS: To identify robust circulating predictors for incident atrial fibrillation (AF) using classical regressions and machine learning (ML) techniques within a broad spectrum of candidate variables. METHODS AND RESULTS: In pooled European community cohorts (n = 42 280 individuals), 14 routinely avai...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062370/ https://www.ncbi.nlm.nih.gov/pubmed/36610061 http://dx.doi.org/10.1093/europace/euac260 |
_version_ | 1785017480433893376 |
---|---|
author | Toprak, Betül Brandt, Stephanie Brederecke, Jan Gianfagna, Francesco Vishram-Nielsen, Julie K K Ojeda, Francisco M Costanzo, Simona Börschel, Christin S Söderberg, Stefan Katsoularis, Ioannis Camen, Stephan Vartiainen, Erkki Donati, Maria Benedetta Kontto, Jukka Bobak, Martin Mathiesen, Ellisiv B Linneberg, Allan Koenig, Wolfgang Løchen, Maja-Lisa Di Castelnuovo, Augusto Blankenberg, Stefan de Gaetano, Giovanni Kuulasmaa, Kari Salomaa, Veikko Iacoviello, Licia Niiranen, Teemu Zeller, Tanja Schnabel, Renate B |
author_facet | Toprak, Betül Brandt, Stephanie Brederecke, Jan Gianfagna, Francesco Vishram-Nielsen, Julie K K Ojeda, Francisco M Costanzo, Simona Börschel, Christin S Söderberg, Stefan Katsoularis, Ioannis Camen, Stephan Vartiainen, Erkki Donati, Maria Benedetta Kontto, Jukka Bobak, Martin Mathiesen, Ellisiv B Linneberg, Allan Koenig, Wolfgang Løchen, Maja-Lisa Di Castelnuovo, Augusto Blankenberg, Stefan de Gaetano, Giovanni Kuulasmaa, Kari Salomaa, Veikko Iacoviello, Licia Niiranen, Teemu Zeller, Tanja Schnabel, Renate B |
author_sort | Toprak, Betül |
collection | PubMed |
description | AIMS: To identify robust circulating predictors for incident atrial fibrillation (AF) using classical regressions and machine learning (ML) techniques within a broad spectrum of candidate variables. METHODS AND RESULTS: In pooled European community cohorts (n = 42 280 individuals), 14 routinely available biomarkers mirroring distinct pathophysiological pathways including lipids, inflammation, renal, and myocardium-specific markers (N-terminal pro B-type natriuretic peptide [NT-proBNP], high-sensitivity troponin I [hsTnI]) were examined in relation to incident AF using Cox regressions and distinct ML methods. Of 42 280 individuals (21 843 women [51.7%]; median [interquartile range, IQR] age, 52.2 [42.7, 62.0] years), 1496 (3.5%) developed AF during a median follow-up time of 5.7 years. In multivariable-adjusted Cox-regression analysis, NT-proBNP was the strongest circulating predictor of incident AF [hazard ratio (HR) per standard deviation (SD), 1.93 (95% CI, 1.82–2.04); P < 0.001]. Further, hsTnI [HR per SD, 1.18 (95% CI, 1.13–1.22); P < 0.001], cystatin C [HR per SD, 1.16 (95% CI, 1.10–1.23); P < 0.001], and C-reactive protein [HR per SD, 1.08 (95% CI, 1.02–1.14); P = 0.012] correlated positively with incident AF. Applying various ML techniques, a high inter-method consistency of selected candidate variables was observed. NT-proBNP was identified as the blood-based marker with the highest predictive value for incident AF. Relevant clinical predictors were age, the use of antihypertensive medication, and body mass index. CONCLUSION: Using different variable selection procedures including ML methods, NT-proBNP consistently remained the strongest blood-based predictor of incident AF and ranked before classical cardiovascular risk factors. The clinical benefit of these findings for identifying at-risk individuals for targeted AF screening needs to be elucidated and tested prospectively. |
format | Online Article Text |
id | pubmed-10062370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-100623702023-03-31 Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods Toprak, Betül Brandt, Stephanie Brederecke, Jan Gianfagna, Francesco Vishram-Nielsen, Julie K K Ojeda, Francisco M Costanzo, Simona Börschel, Christin S Söderberg, Stefan Katsoularis, Ioannis Camen, Stephan Vartiainen, Erkki Donati, Maria Benedetta Kontto, Jukka Bobak, Martin Mathiesen, Ellisiv B Linneberg, Allan Koenig, Wolfgang Løchen, Maja-Lisa Di Castelnuovo, Augusto Blankenberg, Stefan de Gaetano, Giovanni Kuulasmaa, Kari Salomaa, Veikko Iacoviello, Licia Niiranen, Teemu Zeller, Tanja Schnabel, Renate B Europace Clinical Research AIMS: To identify robust circulating predictors for incident atrial fibrillation (AF) using classical regressions and machine learning (ML) techniques within a broad spectrum of candidate variables. METHODS AND RESULTS: In pooled European community cohorts (n = 42 280 individuals), 14 routinely available biomarkers mirroring distinct pathophysiological pathways including lipids, inflammation, renal, and myocardium-specific markers (N-terminal pro B-type natriuretic peptide [NT-proBNP], high-sensitivity troponin I [hsTnI]) were examined in relation to incident AF using Cox regressions and distinct ML methods. Of 42 280 individuals (21 843 women [51.7%]; median [interquartile range, IQR] age, 52.2 [42.7, 62.0] years), 1496 (3.5%) developed AF during a median follow-up time of 5.7 years. In multivariable-adjusted Cox-regression analysis, NT-proBNP was the strongest circulating predictor of incident AF [hazard ratio (HR) per standard deviation (SD), 1.93 (95% CI, 1.82–2.04); P < 0.001]. Further, hsTnI [HR per SD, 1.18 (95% CI, 1.13–1.22); P < 0.001], cystatin C [HR per SD, 1.16 (95% CI, 1.10–1.23); P < 0.001], and C-reactive protein [HR per SD, 1.08 (95% CI, 1.02–1.14); P = 0.012] correlated positively with incident AF. Applying various ML techniques, a high inter-method consistency of selected candidate variables was observed. NT-proBNP was identified as the blood-based marker with the highest predictive value for incident AF. Relevant clinical predictors were age, the use of antihypertensive medication, and body mass index. CONCLUSION: Using different variable selection procedures including ML methods, NT-proBNP consistently remained the strongest blood-based predictor of incident AF and ranked before classical cardiovascular risk factors. The clinical benefit of these findings for identifying at-risk individuals for targeted AF screening needs to be elucidated and tested prospectively. Oxford University Press 2023-01-04 /pmc/articles/PMC10062370/ /pubmed/36610061 http://dx.doi.org/10.1093/europace/euac260 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Clinical Research Toprak, Betül Brandt, Stephanie Brederecke, Jan Gianfagna, Francesco Vishram-Nielsen, Julie K K Ojeda, Francisco M Costanzo, Simona Börschel, Christin S Söderberg, Stefan Katsoularis, Ioannis Camen, Stephan Vartiainen, Erkki Donati, Maria Benedetta Kontto, Jukka Bobak, Martin Mathiesen, Ellisiv B Linneberg, Allan Koenig, Wolfgang Løchen, Maja-Lisa Di Castelnuovo, Augusto Blankenberg, Stefan de Gaetano, Giovanni Kuulasmaa, Kari Salomaa, Veikko Iacoviello, Licia Niiranen, Teemu Zeller, Tanja Schnabel, Renate B Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods |
title | Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods |
title_full | Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods |
title_fullStr | Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods |
title_full_unstemmed | Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods |
title_short | Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods |
title_sort | exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in european cohorts using regressions and modern machine learning methods |
topic | Clinical Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062370/ https://www.ncbi.nlm.nih.gov/pubmed/36610061 http://dx.doi.org/10.1093/europace/euac260 |
work_keys_str_mv | AT toprakbetul exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT brandtstephanie exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT bredereckejan exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT gianfagnafrancesco exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT vishramnielsenjuliekk exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT ojedafranciscom exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT costanzosimona exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT borschelchristins exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT soderbergstefan exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT katsoularisioannis exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT camenstephan exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT vartiainenerkki exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT donatimariabenedetta exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT konttojukka exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT bobakmartin exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT mathiesenellisivb exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT linnebergallan exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT koenigwolfgang exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT løchenmajalisa exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT dicastelnuovoaugusto exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT blankenbergstefan exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT degaetanogiovanni exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT kuulasmaakari exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT salomaaveikko exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT iacoviellolicia exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT niiranenteemu exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT zellertanja exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods AT schnabelrenateb exploringtheincrementalutilityofcirculatingbiomarkersforrobustriskpredictionofincidentatrialfibrillationineuropeancohortsusingregressionsandmodernmachinelearningmethods |