Cargando…

Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence

With the increasing availability of neuroimaging data from multiple modalities—each providing a different lens through which to study brain structure or function—new techniques for comparing, integrating, and interpreting information within and across modalities have emerged. Recent developments inc...

Descripción completa

Detalles Bibliográficos
Autores principales: Weinstein, Sarah M., Vandekar, Simon N., Baller, Erica B., Tu, Danni, Adebimpe, Azeez, Tapera, Tinashe M., Gur, Ruben C., Gur, Raquel E., Detre, John A., Raznahan, Armin, Alexander-Bloch, Aaron F., Satterthwaite, Theodore D., Shinohara, Russell T., Park, Jun Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062374/
https://www.ncbi.nlm.nih.gov/pubmed/36309332
http://dx.doi.org/10.1016/j.neuroimage.2022.119712
_version_ 1785017481525460992
author Weinstein, Sarah M.
Vandekar, Simon N.
Baller, Erica B.
Tu, Danni
Adebimpe, Azeez
Tapera, Tinashe M.
Gur, Ruben C.
Gur, Raquel E.
Detre, John A.
Raznahan, Armin
Alexander-Bloch, Aaron F.
Satterthwaite, Theodore D.
Shinohara, Russell T.
Park, Jun Young
author_facet Weinstein, Sarah M.
Vandekar, Simon N.
Baller, Erica B.
Tu, Danni
Adebimpe, Azeez
Tapera, Tinashe M.
Gur, Ruben C.
Gur, Raquel E.
Detre, John A.
Raznahan, Armin
Alexander-Bloch, Aaron F.
Satterthwaite, Theodore D.
Shinohara, Russell T.
Park, Jun Young
author_sort Weinstein, Sarah M.
collection PubMed
description With the increasing availability of neuroimaging data from multiple modalities—each providing a different lens through which to study brain structure or function—new techniques for comparing, integrating, and interpreting information within and across modalities have emerged. Recent developments include hypothesis tests of associations between neuroimaging modalities, which can be used to determine the statistical significance of intermodal associations either throughout the entire brain or within anatomical subregions or functional networks. While these methods provide a crucial foundation for inference on intermodal relationships, they cannot be used to answer questions about where in the brain these associations are most pronounced. In this paper, we introduce a new method, called CLEAN-R, that can be used both to test intermodal correspondence throughout the brain and also to localize this correspondence. Our method involves first adjusting for the underlying spatial autocorrelation structure within each modality before aggregating information within small clusters to construct a map of enhanced test statistics. Using structural and functional magnetic resonance imaging data from a subsample of children and adolescents from the Philadelphia Neurodevelopmental Cohort, we conduct simulations and data analyses where we illustrate the high statistical power and nominal type I error levels of our method. By constructing an interpretable map of group-level correspondence using spatially-enhanced test statistics, our method offers insights beyond those provided by earlier methods.
format Online
Article
Text
id pubmed-10062374
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-100623742023-03-30 Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence Weinstein, Sarah M. Vandekar, Simon N. Baller, Erica B. Tu, Danni Adebimpe, Azeez Tapera, Tinashe M. Gur, Ruben C. Gur, Raquel E. Detre, John A. Raznahan, Armin Alexander-Bloch, Aaron F. Satterthwaite, Theodore D. Shinohara, Russell T. Park, Jun Young Neuroimage Article With the increasing availability of neuroimaging data from multiple modalities—each providing a different lens through which to study brain structure or function—new techniques for comparing, integrating, and interpreting information within and across modalities have emerged. Recent developments include hypothesis tests of associations between neuroimaging modalities, which can be used to determine the statistical significance of intermodal associations either throughout the entire brain or within anatomical subregions or functional networks. While these methods provide a crucial foundation for inference on intermodal relationships, they cannot be used to answer questions about where in the brain these associations are most pronounced. In this paper, we introduce a new method, called CLEAN-R, that can be used both to test intermodal correspondence throughout the brain and also to localize this correspondence. Our method involves first adjusting for the underlying spatial autocorrelation structure within each modality before aggregating information within small clusters to construct a map of enhanced test statistics. Using structural and functional magnetic resonance imaging data from a subsample of children and adolescents from the Philadelphia Neurodevelopmental Cohort, we conduct simulations and data analyses where we illustrate the high statistical power and nominal type I error levels of our method. By constructing an interpretable map of group-level correspondence using spatially-enhanced test statistics, our method offers insights beyond those provided by earlier methods. 2022-12-01 2022-10-26 /pmc/articles/PMC10062374/ /pubmed/36309332 http://dx.doi.org/10.1016/j.neuroimage.2022.119712 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) )
spellingShingle Article
Weinstein, Sarah M.
Vandekar, Simon N.
Baller, Erica B.
Tu, Danni
Adebimpe, Azeez
Tapera, Tinashe M.
Gur, Ruben C.
Gur, Raquel E.
Detre, John A.
Raznahan, Armin
Alexander-Bloch, Aaron F.
Satterthwaite, Theodore D.
Shinohara, Russell T.
Park, Jun Young
Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence
title Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence
title_full Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence
title_fullStr Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence
title_full_unstemmed Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence
title_short Spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence
title_sort spatially-enhanced clusterwise inference for testing and localizing intermodal correspondence
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062374/
https://www.ncbi.nlm.nih.gov/pubmed/36309332
http://dx.doi.org/10.1016/j.neuroimage.2022.119712
work_keys_str_mv AT weinsteinsarahm spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT vandekarsimonn spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT ballerericab spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT tudanni spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT adebimpeazeez spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT taperatinashem spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT gurrubenc spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT gurraquele spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT detrejohna spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT raznahanarmin spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT alexanderblochaaronf spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT satterthwaitetheodored spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT shinohararussellt spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence
AT parkjunyoung spatiallyenhancedclusterwiseinferencefortestingandlocalizingintermodalcorrespondence