Cargando…
Assessing Inter-Annotator Agreement for Medical Image Segmentation
Artificial Intelligence (AI)-based medical computer vision algorithm training and evaluations depend on annotations and labeling. However, variability between expert annotators introduces noise in training data that can adversely impact the performance of AI algorithms. This study aims to assess, il...
Autores principales: | YANG, FENG, ZAMZMI, GHADA, ANGARA, SANDEEP, RAJARAMAN, SIVARAMAKRISHNAN, AQUILINA, ANDRÉ, XUE, ZHIYUN, JAEGER, STEFAN, PAPAGIANNAKIS, EMMANOUIL, ANTANI, SAMEER K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062409/ https://www.ncbi.nlm.nih.gov/pubmed/37008654 http://dx.doi.org/10.1109/access.2023.3249759 |
Ejemplares similares
-
Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Trilateral Attention Network for Real-Time Cardiac Region Segmentation
por: ZAMZMI, GHADA, et al.
Publicado: (2021) -
Cross Dataset Analysis of Domain Shift in CXR Lung Region Detection
por: Xue, Zhiyun, et al.
Publicado: (2023)