Cargando…
Estimating Temporally Variable Selection Intensity from Ancient DNA Data
Novel technologies for recovering DNA information from archaeological and historical specimens have made available an ever-increasing amount of temporally spaced genetic samples from natural populations. These genetic time series permit the direct assessment of patterns of temporal changes in allele...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063216/ https://www.ncbi.nlm.nih.gov/pubmed/36661852 http://dx.doi.org/10.1093/molbev/msad008 |
_version_ | 1785017663264653312 |
---|---|
author | He, Zhangyi Dai, Xiaoyang Lyu, Wenyang Beaumont, Mark Yu, Feng |
author_facet | He, Zhangyi Dai, Xiaoyang Lyu, Wenyang Beaumont, Mark Yu, Feng |
author_sort | He, Zhangyi |
collection | PubMed |
description | Novel technologies for recovering DNA information from archaeological and historical specimens have made available an ever-increasing amount of temporally spaced genetic samples from natural populations. These genetic time series permit the direct assessment of patterns of temporal changes in allele frequencies and hold the promise of improving power for the inference of selection. Increased time resolution can further facilitate testing hypotheses regarding the drivers of past selection events such as the incidence of plant and animal domestication. However, studying past selection processes through ancient DNA (aDNA) still involves considerable obstacles such as postmortem damage, high fragmentation, low coverage, and small samples. To circumvent these challenges, we introduce a novel Bayesian framework for the inference of temporally variable selection based on genotype likelihoods instead of allele frequencies, thereby enabling us to model sample uncertainties resulting from the damage and fragmentation of aDNA molecules. Also, our approach permits the reconstruction of the underlying allele frequency trajectories of the population through time, which allows for a better understanding of the drivers of selection. We evaluate its performance through extensive simulations and demonstrate its utility with an application to the ancient horse samples genotyped at the loci for coat coloration. Our results reveal that incorporating sample uncertainties can further improve the inference of selection. |
format | Online Article Text |
id | pubmed-10063216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-100632162023-03-31 Estimating Temporally Variable Selection Intensity from Ancient DNA Data He, Zhangyi Dai, Xiaoyang Lyu, Wenyang Beaumont, Mark Yu, Feng Mol Biol Evol Methods Novel technologies for recovering DNA information from archaeological and historical specimens have made available an ever-increasing amount of temporally spaced genetic samples from natural populations. These genetic time series permit the direct assessment of patterns of temporal changes in allele frequencies and hold the promise of improving power for the inference of selection. Increased time resolution can further facilitate testing hypotheses regarding the drivers of past selection events such as the incidence of plant and animal domestication. However, studying past selection processes through ancient DNA (aDNA) still involves considerable obstacles such as postmortem damage, high fragmentation, low coverage, and small samples. To circumvent these challenges, we introduce a novel Bayesian framework for the inference of temporally variable selection based on genotype likelihoods instead of allele frequencies, thereby enabling us to model sample uncertainties resulting from the damage and fragmentation of aDNA molecules. Also, our approach permits the reconstruction of the underlying allele frequency trajectories of the population through time, which allows for a better understanding of the drivers of selection. We evaluate its performance through extensive simulations and demonstrate its utility with an application to the ancient horse samples genotyped at the loci for coat coloration. Our results reveal that incorporating sample uncertainties can further improve the inference of selection. Oxford University Press 2023-01-20 /pmc/articles/PMC10063216/ /pubmed/36661852 http://dx.doi.org/10.1093/molbev/msad008 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods He, Zhangyi Dai, Xiaoyang Lyu, Wenyang Beaumont, Mark Yu, Feng Estimating Temporally Variable Selection Intensity from Ancient DNA Data |
title | Estimating Temporally Variable Selection Intensity from Ancient DNA Data |
title_full | Estimating Temporally Variable Selection Intensity from Ancient DNA Data |
title_fullStr | Estimating Temporally Variable Selection Intensity from Ancient DNA Data |
title_full_unstemmed | Estimating Temporally Variable Selection Intensity from Ancient DNA Data |
title_short | Estimating Temporally Variable Selection Intensity from Ancient DNA Data |
title_sort | estimating temporally variable selection intensity from ancient dna data |
topic | Methods |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063216/ https://www.ncbi.nlm.nih.gov/pubmed/36661852 http://dx.doi.org/10.1093/molbev/msad008 |
work_keys_str_mv | AT hezhangyi estimatingtemporallyvariableselectionintensityfromancientdnadata AT daixiaoyang estimatingtemporallyvariableselectionintensityfromancientdnadata AT lyuwenyang estimatingtemporallyvariableselectionintensityfromancientdnadata AT beaumontmark estimatingtemporallyvariableselectionintensityfromancientdnadata AT yufeng estimatingtemporallyvariableselectionintensityfromancientdnadata |