Cargando…
ProteInfer, deep neural networks for protein functional inference
Predicting the function of a protein from its amino acid sequence is a long-standing challenge in bioinformatics. Traditional approaches use sequence alignment to compare a query sequence either to thousands of models of protein families or to large databases of individual protein sequences. Here we...
Autores principales: | Sanderson, Theo, Bileschi, Maxwell L, Belanger, David, Colwell, Lucy J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063232/ https://www.ncbi.nlm.nih.gov/pubmed/36847334 http://dx.doi.org/10.7554/eLife.80942 |
Ejemplares similares
-
Inferring multi-scale neural mechanisms with brain network modelling
por: Schirner, Michael, et al.
Publicado: (2018) -
Interrogating theoretical models of neural computation with emergent property inference
por: Bittner, Sean R, et al.
Publicado: (2021) -
Inferring joint sequence-structural determinants of protein functional specificity
por: Neuwald, Andrew F, et al.
Publicado: (2018) -
Dopamine role in learning and action inference
por: Bogacz, Rafal
Publicado: (2020) -
Inference of gene regulation functions from dynamic transcriptome data
por: Hillenbrand, Patrick, et al.
Publicado: (2016)