Cargando…
Detecting dengue fever in children using online Rasch analysis to develop algorithms for parents: An APP development and usability study
Dengue fever (DF) is a significant public health concern in Asia. However, detecting the disease using traditional dichotomous criteria (i.e., absent vs present) can be extremely difficult. Convolutional neural networks (CNNs) and artificial neural networks (ANNs), due to their use of a large number...
Autores principales: | Hu, Ting-Yun, Chow, Julie Chi, Chien, Tsair-Wei, Chou, Willy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063317/ https://www.ncbi.nlm.nih.gov/pubmed/37000053 http://dx.doi.org/10.1097/MD.0000000000033296 |
Ejemplares similares
-
Assessing ChatGPT’s capacity for clinical decision support in pediatrics: A comparative study with pediatricians using KIDMAP of Rasch analysis
por: Kao, Hsu-Ju, et al.
Publicado: (2023) -
An App Detecting Dengue Fever in Children: Using Sequencing Symptom Patterns for a Web-Based Assessment
por: Chien, Tsair-Wei, et al.
Publicado: (2019) -
An App for Identifying Children at Risk for Developmental Problems Using Multidimensional Computerized Adaptive Testing: Development and Usability Study
por: Hsu, Chen-Fang, et al.
Publicado: (2020) -
An App for Detecting Bullying of Nurses Using Convolutional Neural Networks and Web-Based Computerized Adaptive Testing: Development and Usability Study
por: Ma, Shu-Ching, et al.
Publicado: (2020) -
Are parents’ statements reliable for diagnosis of serious bacterial infection among children with fever without an apparent source?: A retrospective study
por: Lee, Ha Ni, et al.
Publicado: (2019)