Cargando…
Boosting automatic COVID-19 detection performance with self-supervised learning and batch knowledge ensembling
PROBLEM: Detecting COVID-19 from chest X-ray (CXR) images has become one of the fastest and easiest methods for detecting COVID-19. However, the existing methods usually use supervised transfer learning from natural images as a pretraining process. These methods do not consider the unique features o...
Autores principales: | Li, Guang, Togo, Ren, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063457/ https://www.ncbi.nlm.nih.gov/pubmed/37019015 http://dx.doi.org/10.1016/j.compbiomed.2023.106877 |
Ejemplares similares
-
COVID-19 detection based on self-supervised transfer learning using chest X-ray images
por: Li, Guang, et al.
Publicado: (2022) -
Controllable Music Playlist Generation Based on Knowledge Graph and Reinforcement Learning †
por: Sakurai, Keigo, et al.
Publicado: (2022) -
Diversity Learning Based on Multi-Latent Space for Medical Image Visual Question Generation
por: Zhu, He, et al.
Publicado: (2023) -
Defect Detection of Subway Tunnels Using Advanced U-Net Network
por: Wang, An, et al.
Publicado: (2022) -
Chronic atrophic gastritis detection with a convolutional neural network considering stomach regions
por: Kanai, Misaki, et al.
Publicado: (2020)