Cargando…

A dataset of asymptomatic human gait and movements obtained from markers, IMUs, insoles and force plates

Human motion capture and analysis could be made easier through the use of wearable devices such as inertial sensors and/or pressure insoles. However, many steps are still needed to reach the performance of optoelectronic systems to compute kinematic parameters. The proposed dataset has been establis...

Descripción completa

Detalles Bibliográficos
Autores principales: Grouvel, Gautier, Carcreff, Lena, Moissenet, Florent, Armand, Stéphane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063557/
https://www.ncbi.nlm.nih.gov/pubmed/36997555
http://dx.doi.org/10.1038/s41597-023-02077-3
Descripción
Sumario:Human motion capture and analysis could be made easier through the use of wearable devices such as inertial sensors and/or pressure insoles. However, many steps are still needed to reach the performance of optoelectronic systems to compute kinematic parameters. The proposed dataset has been established on 10 asymptomatic adults. Participants were asked to walk at different speeds on a 10-meters walkway in a laboratory and to perform different movements such as squats or knee flexion/extension tasks. Three-dimensional trajectories of 69 reflective markers placed according to a conventional full body markerset, acceleration and angular velocity signals of 8 inertial sensors, pressure signals of 2 insoles, 3D ground reaction forces and moments obtained from 3 force plates were simultaneously recorded. Eight calculated virtual markers related to joint centers were also added to the dataset. This dataset contains a total of 337 trials including static and dynamic tasks for each participant. Its purpose is to enable comparisons between various motion capture systems and stimulate the development of new methods for gait analysis.