Cargando…
Weakly supervised label propagation algorithm classifies lung cancer imaging subtypes
Aiming at the problems of long time, high cost, invasive sampling damage, and easy emergence of drug resistance in lung cancer gene detection, a reliable and non-invasive prognostic method is proposed. Under the guidance of weakly supervised learning, deep metric learning and graph clustering method...
Autores principales: | Ren, Xueting, Jia, Liye, Zhao, Zijuan, Qiang, Yan, Wu, Wei, Han, Peng, Zhao, Juanjuan, Sun, Jingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063585/ https://www.ncbi.nlm.nih.gov/pubmed/36997586 http://dx.doi.org/10.1038/s41598-023-32301-4 |
Ejemplares similares
-
Classifying tumors by supervised network propagation
por: Zhang, Wei, et al.
Publicado: (2018) -
Classifying tumors by supervised network propagation
por: Zhang, Wei, et al.
Publicado: (2019) -
Weakly supervised segmentation models as explainable radiological classifiers for lung tumour detection on CT images
por: O’Shea, Robert, et al.
Publicado: (2023) -
Weakly Supervised Sensitive Heatmap framework to classify and localize diabetic retinopathy lesions
por: Al-Mukhtar, Mohammed, et al.
Publicado: (2021) -
Practical Weak Supervision
por: Tok, Wee, et al.
Publicado: (2021)