Cargando…

Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy

BACKGROUND: Early changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor’s ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival...

Descripción completa

Detalles Bibliográficos
Autores principales: Chitalia, Rhea, Miliotis, Marios, Jahani, Nariman, Tastsoglou, Spyros, McDonald, Elizabeth S., Belenky, Vivian, Cohen, Eric A., Newitt, David, van’t Veer, Laura J., Esserman, Laura, Hylton, Nola, DeMichele, Angela, Hatzigeorgiou, Artemis, Kontos, Despina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063641/
https://www.ncbi.nlm.nih.gov/pubmed/36997615
http://dx.doi.org/10.1038/s43856-023-00273-1
_version_ 1785017748763443200
author Chitalia, Rhea
Miliotis, Marios
Jahani, Nariman
Tastsoglou, Spyros
McDonald, Elizabeth S.
Belenky, Vivian
Cohen, Eric A.
Newitt, David
van’t Veer, Laura J.
Esserman, Laura
Hylton, Nola
DeMichele, Angela
Hatzigeorgiou, Artemis
Kontos, Despina
author_facet Chitalia, Rhea
Miliotis, Marios
Jahani, Nariman
Tastsoglou, Spyros
McDonald, Elizabeth S.
Belenky, Vivian
Cohen, Eric A.
Newitt, David
van’t Veer, Laura J.
Esserman, Laura
Hylton, Nola
DeMichele, Angela
Hatzigeorgiou, Artemis
Kontos, Despina
author_sort Chitalia, Rhea
collection PubMed
description BACKGROUND: Early changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor’s ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival (RFS). METHODS: A total of 100 women from the ACRIN 6657/I-SPY 1 trial were retrospectively analyzed. We estimated MammaPrint, PAM50 ROR-S, and p53 mutation scores from publicly available gene expression data and generated four, voxel-wise 3-D radiomic kinetic maps from DCE-MR images at both pre- and early-treatment time points. Within the primary lesion from each kinetic map, features of change in radiomic heterogeneity were summarized into 6 principal components. RESULTS: We identify two imaging phenotypes of change in intratumor heterogeneity (p < 0.01) demonstrating significant Kaplan-Meier curve separation (p < 0.001). Adding phenotypes to established prognostic factors, functional tumor volume (FTV), MammaPrint, PAM50, and p53 scores in a Cox regression model improves the concordance statistic for predicting RFS from 0.73 to 0.79 (p = 0.002). CONCLUSIONS: These results demonstrate an important step in combining personalized molecular signatures and longitudinal imaging data towards improved prognosis.
format Online
Article
Text
id pubmed-10063641
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100636412023-04-01 Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy Chitalia, Rhea Miliotis, Marios Jahani, Nariman Tastsoglou, Spyros McDonald, Elizabeth S. Belenky, Vivian Cohen, Eric A. Newitt, David van’t Veer, Laura J. Esserman, Laura Hylton, Nola DeMichele, Angela Hatzigeorgiou, Artemis Kontos, Despina Commun Med (Lond) Article BACKGROUND: Early changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor’s ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival (RFS). METHODS: A total of 100 women from the ACRIN 6657/I-SPY 1 trial were retrospectively analyzed. We estimated MammaPrint, PAM50 ROR-S, and p53 mutation scores from publicly available gene expression data and generated four, voxel-wise 3-D radiomic kinetic maps from DCE-MR images at both pre- and early-treatment time points. Within the primary lesion from each kinetic map, features of change in radiomic heterogeneity were summarized into 6 principal components. RESULTS: We identify two imaging phenotypes of change in intratumor heterogeneity (p < 0.01) demonstrating significant Kaplan-Meier curve separation (p < 0.001). Adding phenotypes to established prognostic factors, functional tumor volume (FTV), MammaPrint, PAM50, and p53 scores in a Cox regression model improves the concordance statistic for predicting RFS from 0.73 to 0.79 (p = 0.002). CONCLUSIONS: These results demonstrate an important step in combining personalized molecular signatures and longitudinal imaging data towards improved prognosis. Nature Publishing Group UK 2023-03-30 /pmc/articles/PMC10063641/ /pubmed/36997615 http://dx.doi.org/10.1038/s43856-023-00273-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Chitalia, Rhea
Miliotis, Marios
Jahani, Nariman
Tastsoglou, Spyros
McDonald, Elizabeth S.
Belenky, Vivian
Cohen, Eric A.
Newitt, David
van’t Veer, Laura J.
Esserman, Laura
Hylton, Nola
DeMichele, Angela
Hatzigeorgiou, Artemis
Kontos, Despina
Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy
title Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy
title_full Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy
title_fullStr Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy
title_full_unstemmed Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy
title_short Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy
title_sort radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063641/
https://www.ncbi.nlm.nih.gov/pubmed/36997615
http://dx.doi.org/10.1038/s43856-023-00273-1
work_keys_str_mv AT chitaliarhea radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT miliotismarios radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT jahaninariman radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT tastsoglouspyros radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT mcdonaldelizabeths radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT belenkyvivian radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT cohenerica radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT newittdavid radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT vantveerlauraj radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT essermanlaura radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT hyltonnola radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT demicheleangela radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT hatzigeorgiouartemis radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy
AT kontosdespina radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy