Cargando…
Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy
BACKGROUND: Early changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor’s ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063641/ https://www.ncbi.nlm.nih.gov/pubmed/36997615 http://dx.doi.org/10.1038/s43856-023-00273-1 |
_version_ | 1785017748763443200 |
---|---|
author | Chitalia, Rhea Miliotis, Marios Jahani, Nariman Tastsoglou, Spyros McDonald, Elizabeth S. Belenky, Vivian Cohen, Eric A. Newitt, David van’t Veer, Laura J. Esserman, Laura Hylton, Nola DeMichele, Angela Hatzigeorgiou, Artemis Kontos, Despina |
author_facet | Chitalia, Rhea Miliotis, Marios Jahani, Nariman Tastsoglou, Spyros McDonald, Elizabeth S. Belenky, Vivian Cohen, Eric A. Newitt, David van’t Veer, Laura J. Esserman, Laura Hylton, Nola DeMichele, Angela Hatzigeorgiou, Artemis Kontos, Despina |
author_sort | Chitalia, Rhea |
collection | PubMed |
description | BACKGROUND: Early changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor’s ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival (RFS). METHODS: A total of 100 women from the ACRIN 6657/I-SPY 1 trial were retrospectively analyzed. We estimated MammaPrint, PAM50 ROR-S, and p53 mutation scores from publicly available gene expression data and generated four, voxel-wise 3-D radiomic kinetic maps from DCE-MR images at both pre- and early-treatment time points. Within the primary lesion from each kinetic map, features of change in radiomic heterogeneity were summarized into 6 principal components. RESULTS: We identify two imaging phenotypes of change in intratumor heterogeneity (p < 0.01) demonstrating significant Kaplan-Meier curve separation (p < 0.001). Adding phenotypes to established prognostic factors, functional tumor volume (FTV), MammaPrint, PAM50, and p53 scores in a Cox regression model improves the concordance statistic for predicting RFS from 0.73 to 0.79 (p = 0.002). CONCLUSIONS: These results demonstrate an important step in combining personalized molecular signatures and longitudinal imaging data towards improved prognosis. |
format | Online Article Text |
id | pubmed-10063641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-100636412023-04-01 Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy Chitalia, Rhea Miliotis, Marios Jahani, Nariman Tastsoglou, Spyros McDonald, Elizabeth S. Belenky, Vivian Cohen, Eric A. Newitt, David van’t Veer, Laura J. Esserman, Laura Hylton, Nola DeMichele, Angela Hatzigeorgiou, Artemis Kontos, Despina Commun Med (Lond) Article BACKGROUND: Early changes in breast intratumor heterogeneity during neoadjuvant chemotherapy may reflect the tumor’s ability to adapt and evade treatment. We investigated the combination of precision medicine predictors of genomic and MRI data towards improved prediction of recurrence free survival (RFS). METHODS: A total of 100 women from the ACRIN 6657/I-SPY 1 trial were retrospectively analyzed. We estimated MammaPrint, PAM50 ROR-S, and p53 mutation scores from publicly available gene expression data and generated four, voxel-wise 3-D radiomic kinetic maps from DCE-MR images at both pre- and early-treatment time points. Within the primary lesion from each kinetic map, features of change in radiomic heterogeneity were summarized into 6 principal components. RESULTS: We identify two imaging phenotypes of change in intratumor heterogeneity (p < 0.01) demonstrating significant Kaplan-Meier curve separation (p < 0.001). Adding phenotypes to established prognostic factors, functional tumor volume (FTV), MammaPrint, PAM50, and p53 scores in a Cox regression model improves the concordance statistic for predicting RFS from 0.73 to 0.79 (p = 0.002). CONCLUSIONS: These results demonstrate an important step in combining personalized molecular signatures and longitudinal imaging data towards improved prognosis. Nature Publishing Group UK 2023-03-30 /pmc/articles/PMC10063641/ /pubmed/36997615 http://dx.doi.org/10.1038/s43856-023-00273-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Chitalia, Rhea Miliotis, Marios Jahani, Nariman Tastsoglou, Spyros McDonald, Elizabeth S. Belenky, Vivian Cohen, Eric A. Newitt, David van’t Veer, Laura J. Esserman, Laura Hylton, Nola DeMichele, Angela Hatzigeorgiou, Artemis Kontos, Despina Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy |
title | Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy |
title_full | Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy |
title_fullStr | Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy |
title_full_unstemmed | Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy |
title_short | Radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy |
title_sort | radiomic tumor phenotypes augment molecular profiling in predicting recurrence free survival after breast neoadjuvant chemotherapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10063641/ https://www.ncbi.nlm.nih.gov/pubmed/36997615 http://dx.doi.org/10.1038/s43856-023-00273-1 |
work_keys_str_mv | AT chitaliarhea radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT miliotismarios radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT jahaninariman radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT tastsoglouspyros radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT mcdonaldelizabeths radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT belenkyvivian radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT cohenerica radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT newittdavid radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT vantveerlauraj radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT essermanlaura radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT hyltonnola radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT demicheleangela radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT hatzigeorgiouartemis radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy AT kontosdespina radiomictumorphenotypesaugmentmolecularprofilinginpredictingrecurrencefreesurvivalafterbreastneoadjuvantchemotherapy |