Cargando…

Genomics of the “tumorigenes” clade of the family Rhizobiaceae and description of Rhizobium rhododendri sp. nov

Tumorigenic members of the family Rhizobiaceae, known as agrobacteria, are responsible for crown and cane gall diseases of various crops worldwide. Tumorigenic agrobacteria are commonly found in the genera Agrobacterium, Allorhizobium, and Rhizobium. In this study, we analyzed a distinct “tumorigene...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuzmanović, Nemanja, diCenzo, George C., Bunk, Boyke, Spröer, Cathrin, Frühling, Anja, Neumann‐Schaal, Meina, Overmann, Jörg, Smalla, Kornelia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064268/
https://www.ncbi.nlm.nih.gov/pubmed/37186225
http://dx.doi.org/10.1002/mbo3.1352
Descripción
Sumario:Tumorigenic members of the family Rhizobiaceae, known as agrobacteria, are responsible for crown and cane gall diseases of various crops worldwide. Tumorigenic agrobacteria are commonly found in the genera Agrobacterium, Allorhizobium, and Rhizobium. In this study, we analyzed a distinct “tumorigenes” clade of the genus Rhizobium, which includes the tumorigenic species Rhizobium tumorigenes, as well as strains causing crown gall disease on rhododendron. Here, high‐quality, closed genomes of representatives of the “tumorigenes” clade were generated, followed by comparative genomic and phylogenomic analyses. Additionally, the phenotypic characteristics of representatives of the “tumorigenes” clade were analyzed. Our results showed that the tumorigenic strains isolated from rhododendron represent a novel species of the genus Rhizobium for which the name Rhizobium rhododendri sp. nov. is proposed. This species also includes additional strains originating from blueberry and Himalayan blackberry in the United States, whose genome sequences were retrieved from GenBank. Both R. tumorigenes and R. rhododendri contain multipartite genomes, including a chromosome, putative chromids, and megaplasmids. Synteny and phylogenetic analyses indicated that a large putative chromid of R. rhododendri resulted from the cointegration of an ancestral megaplasmid and two putative chromids, following its divergence from R. tumorigenes. Moreover, gene clusters specific for both species of the “tumorigenes” clade were identified, and their biological functions and roles in the ecological diversification of R. rhododendri and R. tumorigenes were predicted and discussed.