Cargando…
HXPY: A High-Performance Data Processing Package for Financial Time-Series Data
A tremendous amount of data has been generated by global financial markets everyday, and such time-series data needs to be analyzed in real time to explore its potential value. In recent years, we have witnessed the successful adoption of machine learning models on financial data, where the importan...
Autores principales: | Guo, Jiadong, Peng, Jingshu, Yuan, Hang, Ni, Lionel Ming-shuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064599/ https://www.ncbi.nlm.nih.gov/pubmed/37016601 http://dx.doi.org/10.1007/s11390-023-2879-5 |
Ejemplares similares
-
Visual analysis of blow molding machine multivariate time series data
por: Musleh, Maath, et al.
Publicado: (2022) -
Count Data Time Series Modelling in Julia—The CountTimeSeries.jl Package and Applications
por: Stapper, Manuel
Publicado: (2021) -
Analysis of Financial Time Series: Financial Econometrics
por: Tsay, Ruey S
Publicado: (2001) -
TSIS: an R package to infer alternative splicing isoform switches for time-series data
por: Guo, Wenbin, et al.
Publicado: (2017) -
Financial Governance for Data Processing in the Cloud
por: Duvedi, Amit
Publicado: (2019)