Cargando…
MAEPI and CIR: New Metrics for Robust Evaluation of the Prediction Performance of AI-Based IOL Formulas
PURPOSE: To develop a class of new metrics for evaluating the performance of intraocular lens power calculation formulas robust to issues that can arise with AI-based methods. METHODS: The dataset consists of surgical information and biometry measurements of 6893 eyes of 5016 cataract patients who r...
Autores principales: | Li, Tingyang, Stein, Joshua D., Nallasamy, Nambi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064919/ https://www.ncbi.nlm.nih.gov/pubmed/36976155 http://dx.doi.org/10.1167/tvst.12.3.29 |
Ejemplares similares
-
AI-powered effective lens position prediction improves the accuracy of existing lens formulas
por: Li, Tingyang, et al.
Publicado: (2022) -
AI-Powered Effective Lens Position Prediction Improves the Accuracy of Existing Lens Formulas
por: Li, Tingyang, et al.
Publicado: (2020) -
Challenges of Developing Robust AI for Intrapartum Fetal Heart Rate Monitoring
por: O’Sullivan, M. E., et al.
Publicado: (2021) -
ECAsT: a large dataset for conversational search and an evaluation of metric robustness
por: Al-Thani, Haya, et al.
Publicado: (2023) -
The Promise of AI for DILI Prediction
por: Vall, Andreu, et al.
Publicado: (2021)