Cargando…

Identification of natural peptides from “PlantPepDB” database as anti-SARS-CoV-2 agents: A protein-protein docking approach

BACKGROUND: A global pandemic owing to COVID-19 infection has created havoc in the entire world. The etiological agent responsible for this viral outbreak is classified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Still, there's no specific drug or preventive medication to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhandu, Priyanka, Verma, Himanshu, Raju, Baddipadige, Narendra, Gera, Choudhary, Shalki, Singh, Manmeet, Singh, Pankaj Kumar, Silakari, Om
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Authors. Published by Elsevier B.V. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065049/
https://www.ncbi.nlm.nih.gov/pubmed/37033295
http://dx.doi.org/10.1016/j.phyplu.2023.100446
Descripción
Sumario:BACKGROUND: A global pandemic owing to COVID-19 infection has created havoc in the entire world. The etiological agent responsible for this viral outbreak is classified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Still, there's no specific drug or preventive medication to treat SARS-CoV-2. This study was designed to demonstrate the efficacy of some anti-viral peptides obtained from a plant database i.e., PlantPepDB as potential ACE-2-Spike (S) protein complex neutralizers using a structure-based drug designing approach. METHOD: A total of 83 anti-viral plant peptides were screened from a peptide database i.e. PlantPepDB based on their reported anti-viral activities against various viral strains. In order to screen peptides that may potentially interfere with ACE-2 and S complex formation, molecular docking studies were conducted using the flare module of Cresset software and subsequently, analysed the crucial interactions between the peptides and S complexes and ACE-2/S complex. Herein, the interactions and docking scores obtained for ACE-2/S complex were considered as references. The S-peptides complexes which displayed superior interactions and docking scores than reference complex i.e., ACE2-S were considered as final hits. The Molecular dynamics studies were conducted for a period of 30 ns for each of the final hit/S complex to understand the interaction stability and binding mechanism of designed peptides. RESULTS: The molecular docking results revealed that five peptides including Cycloviolacin Y3, Cycloviolacin Y1, White cloud bean defensin, Putative defensin 3.1, and Defensin D1 showed superior docking scores (i.e. -1372.5 kJ/mol to -1232.6 kJ/mol) when docked at the ACE2 binding site of S-protein than score obtained for the complex of ACE-2 and S protein i.e. -1183.4 kJ/mol. Moreover, these top five peptides manifested key interactions required to prevent the binding of S protein with ACE2. The molecular dynamics simulation study revealed that two of these five peptides i.e. Cycloviolacin Y3 and Cycloviolacin Y1 displayed minimal RMSD fluctuations. CONCLUSIONS: The current structure-based drug-designing approach shows the possible role of anti-viral plant peptides as potential molecules to be explored at the initial stage of viral pathogenesis.