Cargando…

3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs

Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on m...

Descripción completa

Detalles Bibliográficos
Autores principales: Voitsitskyi, Taras, Stratiichuk, Roman, Koleiev, Ihor, Popryho, Leonid, Ostrovsky, Zakhar, Henitsoi, Pavlo, Khropachov, Ivan, Vozniak, Volodymyr, Zhytar, Roman, Nechepurenko, Diana, Yesylevskyy, Semen, Nafiiev, Alan, Starosyla, Serhii
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065141/
https://www.ncbi.nlm.nih.gov/pubmed/37006369
http://dx.doi.org/10.1039/d3ra00281k
_version_ 1785018044161982464
author Voitsitskyi, Taras
Stratiichuk, Roman
Koleiev, Ihor
Popryho, Leonid
Ostrovsky, Zakhar
Henitsoi, Pavlo
Khropachov, Ivan
Vozniak, Volodymyr
Zhytar, Roman
Nechepurenko, Diana
Yesylevskyy, Semen
Nafiiev, Alan
Starosyla, Serhii
author_facet Voitsitskyi, Taras
Stratiichuk, Roman
Koleiev, Ihor
Popryho, Leonid
Ostrovsky, Zakhar
Henitsoi, Pavlo
Khropachov, Ivan
Vozniak, Volodymyr
Zhytar, Roman
Nechepurenko, Diana
Yesylevskyy, Semen
Nafiiev, Alan
Starosyla, Serhii
author_sort Voitsitskyi, Taras
collection PubMed
description Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement.
format Online
Article
Text
id pubmed-10065141
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-100651412023-04-01 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs Voitsitskyi, Taras Stratiichuk, Roman Koleiev, Ihor Popryho, Leonid Ostrovsky, Zakhar Henitsoi, Pavlo Khropachov, Ivan Vozniak, Volodymyr Zhytar, Roman Nechepurenko, Diana Yesylevskyy, Semen Nafiiev, Alan Starosyla, Serhii RSC Adv Chemistry Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement. The Royal Society of Chemistry 2023-03-31 /pmc/articles/PMC10065141/ /pubmed/37006369 http://dx.doi.org/10.1039/d3ra00281k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Voitsitskyi, Taras
Stratiichuk, Roman
Koleiev, Ihor
Popryho, Leonid
Ostrovsky, Zakhar
Henitsoi, Pavlo
Khropachov, Ivan
Vozniak, Volodymyr
Zhytar, Roman
Nechepurenko, Diana
Yesylevskyy, Semen
Nafiiev, Alan
Starosyla, Serhii
3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
title 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
title_full 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
title_fullStr 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
title_full_unstemmed 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
title_short 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
title_sort 3dprotdta: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065141/
https://www.ncbi.nlm.nih.gov/pubmed/37006369
http://dx.doi.org/10.1039/d3ra00281k
work_keys_str_mv AT voitsitskyitaras 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT stratiichukroman 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT koleievihor 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT popryholeonid 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT ostrovskyzakhar 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT henitsoipavlo 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT khropachovivan 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT vozniakvolodymyr 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT zhytarroman 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT nechepurenkodiana 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT yesylevskyysemen 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT nafiievalan 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs
AT starosylaserhii 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs