Cargando…
3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on m...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065141/ https://www.ncbi.nlm.nih.gov/pubmed/37006369 http://dx.doi.org/10.1039/d3ra00281k |
_version_ | 1785018044161982464 |
---|---|
author | Voitsitskyi, Taras Stratiichuk, Roman Koleiev, Ihor Popryho, Leonid Ostrovsky, Zakhar Henitsoi, Pavlo Khropachov, Ivan Vozniak, Volodymyr Zhytar, Roman Nechepurenko, Diana Yesylevskyy, Semen Nafiiev, Alan Starosyla, Serhii |
author_facet | Voitsitskyi, Taras Stratiichuk, Roman Koleiev, Ihor Popryho, Leonid Ostrovsky, Zakhar Henitsoi, Pavlo Khropachov, Ivan Vozniak, Volodymyr Zhytar, Roman Nechepurenko, Diana Yesylevskyy, Semen Nafiiev, Alan Starosyla, Serhii |
author_sort | Voitsitskyi, Taras |
collection | PubMed |
description | Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement. |
format | Online Article Text |
id | pubmed-10065141 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-100651412023-04-01 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs Voitsitskyi, Taras Stratiichuk, Roman Koleiev, Ihor Popryho, Leonid Ostrovsky, Zakhar Henitsoi, Pavlo Khropachov, Ivan Vozniak, Volodymyr Zhytar, Roman Nechepurenko, Diana Yesylevskyy, Semen Nafiiev, Alan Starosyla, Serhii RSC Adv Chemistry Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement. The Royal Society of Chemistry 2023-03-31 /pmc/articles/PMC10065141/ /pubmed/37006369 http://dx.doi.org/10.1039/d3ra00281k Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Voitsitskyi, Taras Stratiichuk, Roman Koleiev, Ihor Popryho, Leonid Ostrovsky, Zakhar Henitsoi, Pavlo Khropachov, Ivan Vozniak, Volodymyr Zhytar, Roman Nechepurenko, Diana Yesylevskyy, Semen Nafiiev, Alan Starosyla, Serhii 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs |
title | 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs |
title_full | 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs |
title_fullStr | 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs |
title_full_unstemmed | 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs |
title_short | 3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs |
title_sort | 3dprotdta: a deep learning model for drug-target affinity prediction based on residue-level protein graphs |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065141/ https://www.ncbi.nlm.nih.gov/pubmed/37006369 http://dx.doi.org/10.1039/d3ra00281k |
work_keys_str_mv | AT voitsitskyitaras 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT stratiichukroman 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT koleievihor 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT popryholeonid 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT ostrovskyzakhar 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT henitsoipavlo 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT khropachovivan 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT vozniakvolodymyr 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT zhytarroman 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT nechepurenkodiana 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT yesylevskyysemen 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT nafiievalan 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs AT starosylaserhii 3dprotdtaadeeplearningmodelfordrugtargetaffinitypredictionbasedonresiduelevelproteingraphs |