Cargando…
FAIR human neuroscientific data sharing to advance AI driven research and applications: Legal frameworks and missing metadata standards
Modern AI supported research holds many promises for basic and applied science. However, the application of AI methods is often limited because most labs cannot, on their own, acquire large and diverse datasets, which are best for training these methods. Data sharing and open science initiatives pro...
Autores principales: | Reer, Aaron, Wiebe, Andreas, Wang, Xu, Rieger, Jochem W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065194/ https://www.ncbi.nlm.nih.gov/pubmed/37007976 http://dx.doi.org/10.3389/fgene.2023.1086802 |
Ejemplares similares
-
Challenges to sharing sample metadata in computational genomics
por: Sheffield, Nathan C., et al.
Publicado: (2023) -
Differential Fairness: An Intersectional Framework for Fair AI †
por: Islam, Rashidul, et al.
Publicado: (2023) -
Benefit sharing: Why inclusive provenance metadata matter
por: Golan, Jacob, et al.
Publicado: (2022) -
AI-assisted ethics? considerations of AI simulation for the ethical assessment and design of assistive technologies
por: Schicktanz, Silke, et al.
Publicado: (2023) -
Modeling community standards for metadata as templates makes data FAIR
por: Musen, Mark A., et al.
Publicado: (2022)