Cargando…

Genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks

The importance of accurate genomic prediction of phenotypes in plant breeding is undeniable, as higher prediction accuracy can increase selection responses. In this regard, epistasis models have shown to be capable of increasing the prediction accuracy while their high computational load is challeng...

Descripción completa

Detalles Bibliográficos
Autores principales: Vojgani, Elaheh, Hölker, Armin C., Mayer, Manfred, Schön, Chris-Carolin, Simianer, Henner, Pook, Torsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065328/
https://www.ncbi.nlm.nih.gov/pubmed/37000811
http://dx.doi.org/10.1371/journal.pone.0282288
_version_ 1785018083914547200
author Vojgani, Elaheh
Hölker, Armin C.
Mayer, Manfred
Schön, Chris-Carolin
Simianer, Henner
Pook, Torsten
author_facet Vojgani, Elaheh
Hölker, Armin C.
Mayer, Manfred
Schön, Chris-Carolin
Simianer, Henner
Pook, Torsten
author_sort Vojgani, Elaheh
collection PubMed
description The importance of accurate genomic prediction of phenotypes in plant breeding is undeniable, as higher prediction accuracy can increase selection responses. In this regard, epistasis models have shown to be capable of increasing the prediction accuracy while their high computational load is challenging. In this study, we investigated the predictive ability obtained in additive and epistasis models when utilizing haplotype blocks versus pruned sets of SNPs by including phenotypic information from the last growing season. This was done by considering a single biological trait in two growing seasons (2017 and 2018) as separate traits in a multi-trait model. Thus, bivariate variants of the Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random Regression BLUP (ERRBLUP) and selective Epistatic Random Regression BLUP (sERRBLUP) as epistasis models were compared with respect to their prediction accuracies for the second year. The prediction accuracies of bivariate GBLUP, ERRBLUP and sERRBLUP were assessed with eight phenotypic traits for 471/402 doubled haploid lines in the European maize landrace Kemater Landmais Gelb/Petkuser Ferdinand Rot. The results indicate that the obtained prediction accuracies are similar when utilizing a pruned set of SNPs or haplotype blocks, while utilizing haplotype blocks reduces the computational load significantly compared to the pruned sets of SNPs. The number of interactions considered in the model was reduced from 323.5/456.4 million for the pruned SNP panel to 4.4/5.5 million in the haplotype block dataset for Kemater and Petkuser landraces, respectively. Since the computational load scales linearly with the number of parameters in the model, this leads to a reduction in computational time of 98.9% from 13.5 hours for the pruned set of markers to 9 minutes for the haplotype block dataset. We further investigated the impact of genomic correlation, phenotypic correlation and trait heritability as factors affecting the bivariate models’ prediction accuracy, identifying the genomic correlation between years as the most influential one. As computational load is substantially reduced, while the accuracy of genomic prediction is unchanged, the here proposed framework to use haplotype blocks in sERRBLUP provided a solution for the practical implementation of sERRBLUP in real breeding programs. Furthermore, our results indicate that sERRBLUP is not only suitable for prediction across different locations, but also for the prediction across growing seasons.
format Online
Article
Text
id pubmed-10065328
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-100653282023-04-01 Genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks Vojgani, Elaheh Hölker, Armin C. Mayer, Manfred Schön, Chris-Carolin Simianer, Henner Pook, Torsten PLoS One Research Article The importance of accurate genomic prediction of phenotypes in plant breeding is undeniable, as higher prediction accuracy can increase selection responses. In this regard, epistasis models have shown to be capable of increasing the prediction accuracy while their high computational load is challenging. In this study, we investigated the predictive ability obtained in additive and epistasis models when utilizing haplotype blocks versus pruned sets of SNPs by including phenotypic information from the last growing season. This was done by considering a single biological trait in two growing seasons (2017 and 2018) as separate traits in a multi-trait model. Thus, bivariate variants of the Genomic Best Linear Unbiased Prediction (GBLUP) as an additive model, Epistatic Random Regression BLUP (ERRBLUP) and selective Epistatic Random Regression BLUP (sERRBLUP) as epistasis models were compared with respect to their prediction accuracies for the second year. The prediction accuracies of bivariate GBLUP, ERRBLUP and sERRBLUP were assessed with eight phenotypic traits for 471/402 doubled haploid lines in the European maize landrace Kemater Landmais Gelb/Petkuser Ferdinand Rot. The results indicate that the obtained prediction accuracies are similar when utilizing a pruned set of SNPs or haplotype blocks, while utilizing haplotype blocks reduces the computational load significantly compared to the pruned sets of SNPs. The number of interactions considered in the model was reduced from 323.5/456.4 million for the pruned SNP panel to 4.4/5.5 million in the haplotype block dataset for Kemater and Petkuser landraces, respectively. Since the computational load scales linearly with the number of parameters in the model, this leads to a reduction in computational time of 98.9% from 13.5 hours for the pruned set of markers to 9 minutes for the haplotype block dataset. We further investigated the impact of genomic correlation, phenotypic correlation and trait heritability as factors affecting the bivariate models’ prediction accuracy, identifying the genomic correlation between years as the most influential one. As computational load is substantially reduced, while the accuracy of genomic prediction is unchanged, the here proposed framework to use haplotype blocks in sERRBLUP provided a solution for the practical implementation of sERRBLUP in real breeding programs. Furthermore, our results indicate that sERRBLUP is not only suitable for prediction across different locations, but also for the prediction across growing seasons. Public Library of Science 2023-03-31 /pmc/articles/PMC10065328/ /pubmed/37000811 http://dx.doi.org/10.1371/journal.pone.0282288 Text en © 2023 Vojgani et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Vojgani, Elaheh
Hölker, Armin C.
Mayer, Manfred
Schön, Chris-Carolin
Simianer, Henner
Pook, Torsten
Genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks
title Genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks
title_full Genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks
title_fullStr Genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks
title_full_unstemmed Genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks
title_short Genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks
title_sort genomic prediction using information across years with epistatic models and dimension reduction via haplotype blocks
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065328/
https://www.ncbi.nlm.nih.gov/pubmed/37000811
http://dx.doi.org/10.1371/journal.pone.0282288
work_keys_str_mv AT vojganielaheh genomicpredictionusinginformationacrossyearswithepistaticmodelsanddimensionreductionviahaplotypeblocks
AT holkerarminc genomicpredictionusinginformationacrossyearswithepistaticmodelsanddimensionreductionviahaplotypeblocks
AT mayermanfred genomicpredictionusinginformationacrossyearswithepistaticmodelsanddimensionreductionviahaplotypeblocks
AT schonchriscarolin genomicpredictionusinginformationacrossyearswithepistaticmodelsanddimensionreductionviahaplotypeblocks
AT simianerhenner genomicpredictionusinginformationacrossyearswithepistaticmodelsanddimensionreductionviahaplotypeblocks
AT pooktorsten genomicpredictionusinginformationacrossyearswithepistaticmodelsanddimensionreductionviahaplotypeblocks