Cargando…
Predicting COVID-19 positivity and hospitalization with multi-scale graph neural networks
The pandemic of COVID-19 is undoubtedly one of the biggest challenges for modern healthcare. In order to analyze the spatio-temporal aspects of the spread of COVID-19, technology has helped us to track, identify and store information regarding positivity and hospitalization, across different levels...
Autores principales: | Skianis, Konstantinos, Nikolentzos, Giannis, Gallix, Benoit, Thiebaut, Rodolphe, Exarchakis, Georgios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10066232/ https://www.ncbi.nlm.nih.gov/pubmed/37002271 http://dx.doi.org/10.1038/s41598-023-31222-6 |
Ejemplares similares
-
Synthetic electronic health records generated with variational graph autoencoders
por: Nikolentzos, Giannis, et al.
Publicado: (2023) -
DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction
por: You, Ronghui, et al.
Publicado: (2021) -
Polymer Informatics
at Scale with Multitask Graph
Neural Networks
por: Gurnani, Rishi, et al.
Publicado: (2023) -
Graph neural network and multi-data heterogeneous networks for microbe-disease prediction
por: Gong, Houwu, et al.
Publicado: (2022) -
Multi-Scale Aggregation Graph Neural Networks Based on Feature Similarity for Semi-Supervised Learning
por: Zhang, Xun, et al.
Publicado: (2021)