Cargando…
A clinical decision support system for AI-assisted decision-making in response-adaptive radiotherapy (ARCliDS)
Involvement of many variables, uncertainty in treatment response, and inter-patient heterogeneity challenge objective decision-making in dynamic treatment regime (DTR) in oncology. Advanced machine learning analytics in conjunction with information-rich dense multi-omics data have the ability to ove...
Autores principales: | Niraula, Dipesh, Sun, Wenbo, Jin, Jionghua, Dinov, Ivo D., Cuneo, Kyle, Jamaluddin, Jamalina, Matuszak, Martha M., Luo, Yi, Lawrence, Theodore S., Jolly, Shruti, Ten Haken, Randall K., El Naqa, Issam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10066294/ https://www.ncbi.nlm.nih.gov/pubmed/37002296 http://dx.doi.org/10.1038/s41598-023-32032-6 |
Ejemplares similares
-
Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2021) -
Author Correction: Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2023) -
A human-in-the-loop based Bayesian network approach to improve imbalanced radiation outcomes prediction for hepatocellular cancer patients with stereotactic body radiotherapy
por: Luo, Yi, et al.
Publicado: (2022) -
Current status and future developments in predicting outcomes in radiation oncology
por: Niraula, Dipesh, et al.
Publicado: (2022) -
Artificial intelligence (AI) and machine learning (ML) in precision oncology: a review on enhancing discoverability through multiomics integration
por: Wei, Lise, et al.
Publicado: (2023)