Cargando…
Machine learning with in silico analysis markedly improves survival prediction modeling in colon cancer patients
BACKGROUND: Predicting the survival of cancer patients provides prognostic information and therapeutic guidance. However, improved prediction models are needed for use in diagnosis and treatment. OBJECTIVE: This study aimed to identify genomic prognostic biomarkers related to colon cancer (CC) based...
Autores principales: | Lee, Choong‐Jae, Baek, Bin, Cho, Sang Hee, Jang, Tae‐Young, Jeon, So‐El, Lee, Sunjae, Lee, Hyunju, Nam, Jeong‐Seok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067044/ https://www.ncbi.nlm.nih.gov/pubmed/36345155 http://dx.doi.org/10.1002/cam4.5420 |
Ejemplares similares
-
Dysadherin awakens mechanical forces and promotes colorectal cancer progression
por: Park, So-Yeon, et al.
Publicado: (2022) -
Aberrant activation of the CD45-Wnt signaling axis promotes stemness and therapy resistance in colorectal cancer cells
por: Park, So-Yeon, et al.
Publicado: (2021) -
DCLK1 promotes colorectal cancer stemness and aggressiveness via the XRCC5/COX2 axis
por: Kim, Jee-Heun, et al.
Publicado: (2022) -
Hydrogen Sensing Using Paper Sensors with Pencil Marks Decorated with Palladium
por: Lee, Nam Hee, et al.
Publicado: (2019) -
Troglitazone Enhances the Apoptotic Response of DLD-1 Colon Cancer Cells to Photodynamic Therapy
por: Park, Hyunju, et al.
Publicado: (2016)