Cargando…
A Selective Mineralocorticoid Receptor Blocker, Esaxerenone, Attenuates Vascular Dysfunction in Diabetic C57BL/6 Mice
Aims: Pharmacological blockade of mineralocorticoid receptors (MRs) is a potential therapeutic approach to reduce cardiovascular complications since MRs play a crucial role in cardiovascular regulation. Recent studies suggest that MR antagonists affect several extrarenal tissues, including vessel fu...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japan Atherosclerosis Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067342/ https://www.ncbi.nlm.nih.gov/pubmed/35732424 http://dx.doi.org/10.5551/jat.63382 |
Sumario: | Aims: Pharmacological blockade of mineralocorticoid receptors (MRs) is a potential therapeutic approach to reduce cardiovascular complications since MRs play a crucial role in cardiovascular regulation. Recent studies suggest that MR antagonists affect several extrarenal tissues, including vessel function. We investigated the effect of a novel nonsteroidal selective MR blocker, esaxerenone, on diabetes-induced vascular dysfunction. Methods: Diabetes was induced by a single dose of streptozotocin in 8-week-old male C57BL/6 mice. Esaxerenone (3 mg/kg/day) or a vehicle was administered by gavage to diabetic mice for 3 weeks. Metabolic parameters, plasma aldosterone levels, and parameters related to renal function were measured. Endothelium-dependent or -independent vascular responses of the aortic segments were analyzed with acetylcholine or sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro study. Results: Induction of diabetes elevated plasma aldosterone level (P<0.05) and impaired endothelium-dependent vascular relaxation (P<0.05). The administration of esaxerenone ameliorated the endothelial dysfunction (P<0.01) without the alteration of metabolic parameters, blood pressure, and renal function. Esaxerenone improved the eNOS(Ser1177) phosphorylation in the aorta obtained from diabetic mice (P<0.05) compared with that in the vehicle-treated group. Furthermore, a major MR agonist, aldosterone, decreased eNOS(Ser1177) phosphorylation and increased eNOS(Thr495) phosphorylation in HUVECs, which recovered with esaxerenone. Esaxerenone ameliorated the endothelium-dependent vascular relaxation caused by aldosterone in the aortic segments obtained from C57BL/6 mice (P<0.001). Conclusion: Esaxerenone attenuates the development of diabetes-induced endothelial dysfunction in mice. These results suggest that esaxerenone has potential vascular protective effects in individuals with diabetes. |
---|