Cargando…
Survival rate prediction of nasopharyngeal carcinoma patients based on MRI and gene expression using a deep neural network
To achieve a better treatment regimen and follow‐up assessment design for intensity‐modulated radiotherapy (IMRT)‐treated nasopharyngeal carcinoma (NPC) patients, an accurate progression‐free survival (PFS) time prediction algorithm is needed. We propose developing a PFS prediction model of NPC pati...
Autores principales: | Zhang, Qihao, Wu, Gang, Yang, Qianyu, Dai, Ganmian, Li, Tiansheng, Chen, Pianpian, Li, Jiao, Huang, Weiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067413/ https://www.ncbi.nlm.nih.gov/pubmed/36541519 http://dx.doi.org/10.1111/cas.15704 |
Ejemplares similares
-
Intravoxel incoherent motion radiomics nomogram for predicting tumor treatment responses in nasopharyngeal carcinoma
por: Guo, Yihao, et al.
Publicado: (2023) -
Deep Convolutional Neural Network for Nasopharyngeal Carcinoma Discrimination on MRI by Comparison of Hierarchical and Simple Layered Convolutional Neural Networks
por: Ji, Li, et al.
Publicado: (2022) -
MRI-Only Radiotherapy Planning for Nasopharyngeal Carcinoma Using Deep Learning
por: Ma, Xiangyu, et al.
Publicado: (2021) -
Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images
por: Men, Kuo, et al.
Publicado: (2017) -
Synthetic CT Generation Based on T2 Weighted MRI of Nasopharyngeal Carcinoma (NPC) Using a Deep Convolutional Neural Network (DCNN)
por: Wang, Yuenan, et al.
Publicado: (2019)