Cargando…
A Trained Humanoid Robot can Perform Human-Like Crossmodal Social Attention and Conflict Resolution
To enhance human-robot social interaction, it is essential for robots to process multiple social cues in a complex real-world environment. However, incongruency of input information across modalities is inevitable and could be challenging for robots to process. To tackle this challenge, our study ad...
Autores principales: | Fu, Di, Abawi, Fares, Carneiro, Hugo, Kerzel, Matthias, Chen, Ziwei, Strahl, Erik, Liu, Xun, Wermter, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067521/ https://www.ncbi.nlm.nih.gov/pubmed/37359433 http://dx.doi.org/10.1007/s12369-023-00993-3 |
Ejemplares similares
-
Teaching NICO How to Grasp: An Empirical Study on Crossmodal Social Interaction as a Key Factor for Robots Learning From Humans
por: Kerzel, Matthias, et al.
Publicado: (2020) -
Learning Then, Learning Now, and Every Second in Between: Lifelong Learning With a Simulated Humanoid Robot
por: Logacjov, Aleksej, et al.
Publicado: (2021) -
What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective
por: Fu, Di, et al.
Publicado: (2020) -
Self-organized Learning from Synthetic and Real-World Data for a Humanoid Exercise Robot
por: Duczek, Nicolas, et al.
Publicado: (2022) -
Crossmodal Pattern Discrimination in Humans and Robots: A Visuo-Tactile Case Study
por: Higgen, Focko L., et al.
Publicado: (2020)