Cargando…
Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation
OBJECTIVE: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. MATERIALS AND METHODS: We collected contrast...
Autores principales: | Lee, Seul Bi, Hong, Youngtaek, Cho, Yeon Jin, Jeong, Dawun, Lee, Jina, Yoon, Soon Ho, Lee, Seunghyun, Choi, Young Hun, Cheon, Jung-Eun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Society of Radiology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067697/ https://www.ncbi.nlm.nih.gov/pubmed/36907592 http://dx.doi.org/10.3348/kjr.2022.0588 |
Ejemplares similares
-
Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography
por: Park, Hyo Jung, et al.
Publicado: (2020) -
Radiomics and Deep Learning: Hepatic Applications
por: Park, Hyo Jung, et al.
Publicado: (2020) -
Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images
por: Ahn, Yura, et al.
Publicado: (2020) -
Deep Learning-Enabled Detection of Pneumoperitoneum in Supine and Erect Abdominal Radiography: Modeling Using Transfer Learning and Semi-Supervised Learning
por: Park, Sangjoon, et al.
Publicado: (2023) -
Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI
por: Park, Hyo Jung, et al.
Publicado: (2022)