Cargando…
Evaluating the generalizability of deep learning image classification algorithms to detect middle ear disease using otoscopy
To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiag...
Autores principales: | Habib, Al-Rahim, Xu, Yixi, Bock, Kris, Mohanty, Shrestha, Sederholm, Tina, Weeks, William B., Dodhia, Rahul, Ferres, Juan Lavista, Perry, Chris, Sacks, Raymond, Singh, Narinder |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067817/ https://www.ncbi.nlm.nih.gov/pubmed/37005441 http://dx.doi.org/10.1038/s41598-023-31921-0 |
Ejemplares similares
-
Artificial intelligence to classify ear disease from otoscopy: A systematic review and meta‐analysis
por: Habib, Al‐Rahim, et al.
Publicado: (2022) -
Middle ear cholesteatoma in two cats diagnosed with the aid of video-otoscopy
por: Botelho, Cristiane Bazaga, et al.
Publicado: (2023) -
Shortwave infrared otoscopy for diagnosis of middle ear effusions: a machine-learning-based approach
por: Kashani, Rustin G., et al.
Publicado: (2021) -
Smartphone-Enabled versus Conventional Otoscopy in Detecting Middle Ear Disease: A Meta-Analysis
por: Chen, Chih-Hao, et al.
Publicado: (2022) -
Smartphone Otoscopy Sans Attachment: A Paradigm Shift in Diagnosing
Ear Pathologies
por: Bhavana, Kranti, et al.
Publicado: (2018)