Cargando…
An integrative machine learning framework for classifying SEER breast cancer
Breast cancer is the commonest type of cancer in women worldwide and the leading cause of mortality for females. The aim of this research is to classify the alive and death status of breast cancer patients using the Surveillance, Epidemiology, and End Results dataset. Due to its capacity to handle e...
Autores principales: | Manikandan, P., Durga, U., Ponnuraja, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067827/ https://www.ncbi.nlm.nih.gov/pubmed/37005484 http://dx.doi.org/10.1038/s41598-023-32029-1 |
Ejemplares similares
-
An integrative deep learning framework for classifying molecular subtypes of breast cancer
por: Mohaiminul Islam, Md., et al.
Publicado: (2020) -
Framework for Testing Robustness of Machine Learning-Based Classifiers
por: Chuah, Joshua, et al.
Publicado: (2022) -
A machine learning based framework to identify and classify long terminal repeat retrotransposons
por: Schietgat, Leander, et al.
Publicado: (2018) -
Integrating multimodal information in machine learning for classifying acute myocardial infarction
por: Xiao, Ran, et al.
Publicado: (2023) -
Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier
por: Subbulakshmi, C. V., et al.
Publicado: (2015)