Cargando…
Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
Mass spectrometry imaging vows to enable simultaneous spatially resolved investigation of hundreds of metabolites in tissues, but it primarily relies on traditional ion images for non-data-driven metabolite visualization and analysis. The rendering and interpretation of ion images neither considers...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067847/ https://www.ncbi.nlm.nih.gov/pubmed/37005414 http://dx.doi.org/10.1038/s41467-023-37394-z |
_version_ | 1785018561120436224 |
---|---|
author | Abu Sammour, Denis Cairns, James L. Boskamp, Tobias Marsching, Christian Kessler, Tobias Ramallo Guevara, Carina Panitz, Verena Sadik, Ahmed Cordes, Jonas Schmidt, Stefan Mohammed, Shad A. Rittel, Miriam F. Friedrich, Mirco Platten, Michael Wolf, Ivo von Deimling, Andreas Opitz, Christiane A. Wick, Wolfgang Hopf, Carsten |
author_facet | Abu Sammour, Denis Cairns, James L. Boskamp, Tobias Marsching, Christian Kessler, Tobias Ramallo Guevara, Carina Panitz, Verena Sadik, Ahmed Cordes, Jonas Schmidt, Stefan Mohammed, Shad A. Rittel, Miriam F. Friedrich, Mirco Platten, Michael Wolf, Ivo von Deimling, Andreas Opitz, Christiane A. Wick, Wolfgang Hopf, Carsten |
author_sort | Abu Sammour, Denis |
collection | PubMed |
description | Mass spectrometry imaging vows to enable simultaneous spatially resolved investigation of hundreds of metabolites in tissues, but it primarily relies on traditional ion images for non-data-driven metabolite visualization and analysis. The rendering and interpretation of ion images neither considers nonlinearities in the resolving power of mass spectrometers nor does it yet evaluate the statistical significance of differential spatial metabolite abundance. Here, we outline the computational framework moleculaR (https://github.com/CeMOS-Mannheim/moleculaR) that is expected to improve signal reliability by data-dependent Gaussian-weighting of ion intensities and that introduces probabilistic molecular mapping of statistically significant nonrandom patterns of relative spatial abundance of metabolites-of-interest in tissue. moleculaR also enables cross-tissue statistical comparisons and collective molecular projections of entire biomolecular ensembles followed by their spatial statistical significance evaluation on a single tissue plane. It thereby fosters the spatially resolved investigation of ion milieus, lipid remodeling pathways, or complex scores like the adenylate energy charge within the same image. |
format | Online Article Text |
id | pubmed-10067847 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-100678472023-04-04 Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging Abu Sammour, Denis Cairns, James L. Boskamp, Tobias Marsching, Christian Kessler, Tobias Ramallo Guevara, Carina Panitz, Verena Sadik, Ahmed Cordes, Jonas Schmidt, Stefan Mohammed, Shad A. Rittel, Miriam F. Friedrich, Mirco Platten, Michael Wolf, Ivo von Deimling, Andreas Opitz, Christiane A. Wick, Wolfgang Hopf, Carsten Nat Commun Article Mass spectrometry imaging vows to enable simultaneous spatially resolved investigation of hundreds of metabolites in tissues, but it primarily relies on traditional ion images for non-data-driven metabolite visualization and analysis. The rendering and interpretation of ion images neither considers nonlinearities in the resolving power of mass spectrometers nor does it yet evaluate the statistical significance of differential spatial metabolite abundance. Here, we outline the computational framework moleculaR (https://github.com/CeMOS-Mannheim/moleculaR) that is expected to improve signal reliability by data-dependent Gaussian-weighting of ion intensities and that introduces probabilistic molecular mapping of statistically significant nonrandom patterns of relative spatial abundance of metabolites-of-interest in tissue. moleculaR also enables cross-tissue statistical comparisons and collective molecular projections of entire biomolecular ensembles followed by their spatial statistical significance evaluation on a single tissue plane. It thereby fosters the spatially resolved investigation of ion milieus, lipid remodeling pathways, or complex scores like the adenylate energy charge within the same image. Nature Publishing Group UK 2023-04-01 /pmc/articles/PMC10067847/ /pubmed/37005414 http://dx.doi.org/10.1038/s41467-023-37394-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Abu Sammour, Denis Cairns, James L. Boskamp, Tobias Marsching, Christian Kessler, Tobias Ramallo Guevara, Carina Panitz, Verena Sadik, Ahmed Cordes, Jonas Schmidt, Stefan Mohammed, Shad A. Rittel, Miriam F. Friedrich, Mirco Platten, Michael Wolf, Ivo von Deimling, Andreas Opitz, Christiane A. Wick, Wolfgang Hopf, Carsten Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging |
title | Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging |
title_full | Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging |
title_fullStr | Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging |
title_full_unstemmed | Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging |
title_short | Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging |
title_sort | spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067847/ https://www.ncbi.nlm.nih.gov/pubmed/37005414 http://dx.doi.org/10.1038/s41467-023-37394-z |
work_keys_str_mv | AT abusammourdenis spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT cairnsjamesl spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT boskamptobias spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT marschingchristian spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT kesslertobias spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT ramalloguevaracarina spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT panitzverena spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT sadikahmed spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT cordesjonas spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT schmidtstefan spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT mohammedshada spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT rittelmiriamf spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT friedrichmirco spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT plattenmichael spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT wolfivo spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT vondeimlingandreas spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT opitzchristianea spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT wickwolfgang spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging AT hopfcarsten spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging |