Cargando…

Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging

Mass spectrometry imaging vows to enable simultaneous spatially resolved investigation of hundreds of metabolites in tissues, but it primarily relies on traditional ion images for non-data-driven metabolite visualization and analysis. The rendering and interpretation of ion images neither considers...

Descripción completa

Detalles Bibliográficos
Autores principales: Abu Sammour, Denis, Cairns, James L., Boskamp, Tobias, Marsching, Christian, Kessler, Tobias, Ramallo Guevara, Carina, Panitz, Verena, Sadik, Ahmed, Cordes, Jonas, Schmidt, Stefan, Mohammed, Shad A., Rittel, Miriam F., Friedrich, Mirco, Platten, Michael, Wolf, Ivo, von Deimling, Andreas, Opitz, Christiane A., Wick, Wolfgang, Hopf, Carsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067847/
https://www.ncbi.nlm.nih.gov/pubmed/37005414
http://dx.doi.org/10.1038/s41467-023-37394-z
_version_ 1785018561120436224
author Abu Sammour, Denis
Cairns, James L.
Boskamp, Tobias
Marsching, Christian
Kessler, Tobias
Ramallo Guevara, Carina
Panitz, Verena
Sadik, Ahmed
Cordes, Jonas
Schmidt, Stefan
Mohammed, Shad A.
Rittel, Miriam F.
Friedrich, Mirco
Platten, Michael
Wolf, Ivo
von Deimling, Andreas
Opitz, Christiane A.
Wick, Wolfgang
Hopf, Carsten
author_facet Abu Sammour, Denis
Cairns, James L.
Boskamp, Tobias
Marsching, Christian
Kessler, Tobias
Ramallo Guevara, Carina
Panitz, Verena
Sadik, Ahmed
Cordes, Jonas
Schmidt, Stefan
Mohammed, Shad A.
Rittel, Miriam F.
Friedrich, Mirco
Platten, Michael
Wolf, Ivo
von Deimling, Andreas
Opitz, Christiane A.
Wick, Wolfgang
Hopf, Carsten
author_sort Abu Sammour, Denis
collection PubMed
description Mass spectrometry imaging vows to enable simultaneous spatially resolved investigation of hundreds of metabolites in tissues, but it primarily relies on traditional ion images for non-data-driven metabolite visualization and analysis. The rendering and interpretation of ion images neither considers nonlinearities in the resolving power of mass spectrometers nor does it yet evaluate the statistical significance of differential spatial metabolite abundance. Here, we outline the computational framework moleculaR (https://github.com/CeMOS-Mannheim/moleculaR) that is expected to improve signal reliability by data-dependent Gaussian-weighting of ion intensities and that introduces probabilistic molecular mapping of statistically significant nonrandom patterns of relative spatial abundance of metabolites-of-interest in tissue. moleculaR also enables cross-tissue statistical comparisons and collective molecular projections of entire biomolecular ensembles followed by their spatial statistical significance evaluation on a single tissue plane. It thereby fosters the spatially resolved investigation of ion milieus, lipid remodeling pathways, or complex scores like the adenylate energy charge within the same image.
format Online
Article
Text
id pubmed-10067847
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-100678472023-04-04 Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging Abu Sammour, Denis Cairns, James L. Boskamp, Tobias Marsching, Christian Kessler, Tobias Ramallo Guevara, Carina Panitz, Verena Sadik, Ahmed Cordes, Jonas Schmidt, Stefan Mohammed, Shad A. Rittel, Miriam F. Friedrich, Mirco Platten, Michael Wolf, Ivo von Deimling, Andreas Opitz, Christiane A. Wick, Wolfgang Hopf, Carsten Nat Commun Article Mass spectrometry imaging vows to enable simultaneous spatially resolved investigation of hundreds of metabolites in tissues, but it primarily relies on traditional ion images for non-data-driven metabolite visualization and analysis. The rendering and interpretation of ion images neither considers nonlinearities in the resolving power of mass spectrometers nor does it yet evaluate the statistical significance of differential spatial metabolite abundance. Here, we outline the computational framework moleculaR (https://github.com/CeMOS-Mannheim/moleculaR) that is expected to improve signal reliability by data-dependent Gaussian-weighting of ion intensities and that introduces probabilistic molecular mapping of statistically significant nonrandom patterns of relative spatial abundance of metabolites-of-interest in tissue. moleculaR also enables cross-tissue statistical comparisons and collective molecular projections of entire biomolecular ensembles followed by their spatial statistical significance evaluation on a single tissue plane. It thereby fosters the spatially resolved investigation of ion milieus, lipid remodeling pathways, or complex scores like the adenylate energy charge within the same image. Nature Publishing Group UK 2023-04-01 /pmc/articles/PMC10067847/ /pubmed/37005414 http://dx.doi.org/10.1038/s41467-023-37394-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Abu Sammour, Denis
Cairns, James L.
Boskamp, Tobias
Marsching, Christian
Kessler, Tobias
Ramallo Guevara, Carina
Panitz, Verena
Sadik, Ahmed
Cordes, Jonas
Schmidt, Stefan
Mohammed, Shad A.
Rittel, Miriam F.
Friedrich, Mirco
Platten, Michael
Wolf, Ivo
von Deimling, Andreas
Opitz, Christiane A.
Wick, Wolfgang
Hopf, Carsten
Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
title Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
title_full Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
title_fullStr Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
title_full_unstemmed Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
title_short Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
title_sort spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067847/
https://www.ncbi.nlm.nih.gov/pubmed/37005414
http://dx.doi.org/10.1038/s41467-023-37394-z
work_keys_str_mv AT abusammourdenis spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT cairnsjamesl spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT boskamptobias spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT marschingchristian spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT kesslertobias spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT ramalloguevaracarina spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT panitzverena spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT sadikahmed spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT cordesjonas spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT schmidtstefan spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT mohammedshada spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT rittelmiriamf spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT friedrichmirco spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT plattenmichael spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT wolfivo spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT vondeimlingandreas spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT opitzchristianea spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT wickwolfgang spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging
AT hopfcarsten spatialprobabilisticmappingofmetaboliteensemblesinmassspectrometryimaging