Cargando…

Application of symmetry evaluation to deep learning algorithm in detection of mastoiditis on mastoid radiographs

As many human organs exist in pairs or have symmetric appearance and loss of symmetry may indicate pathology, symmetry evaluation on medical images is very important and has been routinely performed in diagnosis of diseases and pretreatment evaluation. Therefore, applying symmetry evaluation functio...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Dongjun, Sunwoo, Leonard, You, Sung-Hye, Lee, Kyong Joon, Ryoo, Inseon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067950/
https://www.ncbi.nlm.nih.gov/pubmed/37005429
http://dx.doi.org/10.1038/s41598-023-32147-w
Descripción
Sumario:As many human organs exist in pairs or have symmetric appearance and loss of symmetry may indicate pathology, symmetry evaluation on medical images is very important and has been routinely performed in diagnosis of diseases and pretreatment evaluation. Therefore, applying symmetry evaluation function to deep learning algorithms in interpreting medical images is essential, especially for the organs that have significant inter-individual variation but bilateral symmetry in a person, such as mastoid air cells. In this study, we developed a deep learning algorithm to detect bilateral mastoid abnormalities simultaneously on mastoid anterior–posterior (AP) views with symmetry evaluation. The developed algorithm showed better diagnostic performance in diagnosing mastoiditis on mastoid AP views than the algorithm trained by single-side mastoid radiographs without symmetry evaluation and similar to superior diagnostic performance to head and neck radiologists. The results of this study show the possibility of evaluating symmetry in medical images with deep learning algorithms.