Cargando…
Can multi-source heterogeneous data improve the forecasting performance of tourist arrivals amid COVID-19? Mixed-data sampling approach
The coronavirus disease (COVID-19) pandemic has already caused enormous damage to the global economy and various industries worldwide, especially the tourism industry. In the post-pandemic era, accurate tourism demand recovery forecasting is a vital requirement for a thriving tourism industry. There...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068136/ https://www.ncbi.nlm.nih.gov/pubmed/37035094 http://dx.doi.org/10.1016/j.tourman.2023.104759 |
Sumario: | The coronavirus disease (COVID-19) pandemic has already caused enormous damage to the global economy and various industries worldwide, especially the tourism industry. In the post-pandemic era, accurate tourism demand recovery forecasting is a vital requirement for a thriving tourism industry. Therefore, this study mainly focuses on forecasting tourist arrivals from mainland China to Hong Kong. A new direction in tourism demand recovery forecasting employs multi-source heterogeneous data comprising economy-related variables, search query data, and online news data to motivate the tourism destination forecasting system. The experimental results confirm that incorporating multi-source heterogeneous data can substantially strengthen the forecasting accuracy. Specifically, mixed data sampling (MIDAS) models with different data frequencies outperformed the benchmark models. |
---|