Cargando…
Can multi-source heterogeneous data improve the forecasting performance of tourist arrivals amid COVID-19? Mixed-data sampling approach
The coronavirus disease (COVID-19) pandemic has already caused enormous damage to the global economy and various industries worldwide, especially the tourism industry. In the post-pandemic era, accurate tourism demand recovery forecasting is a vital requirement for a thriving tourism industry. There...
Autores principales: | Wu, Jing, Li, Mingchen, Zhao, Erlong, Sun, Shaolong, Wang, Shouyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068136/ https://www.ncbi.nlm.nih.gov/pubmed/37035094 http://dx.doi.org/10.1016/j.tourman.2023.104759 |
Ejemplares similares
-
Classical Forecasting of International Tourist Arrivals to Thailand
por: Intarapak, Sukanya, et al.
Publicado: (2022) -
Particle Swarm Optimization-Based Support Vector Regression for Tourist Arrivals Forecasting
por: Liu, Hsiou-Hsiang, et al.
Publicado: (2018) -
Forecasting tourist arrivals by using the adaptive network-based fuzzy inference system
por: Chen, Miao-Sheng, et al.
Publicado: (2010) -
Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic
por: Chen, Jingyao, et al.
Publicado: (2023) -
Examining the macro-determinants of tourist arrivals in India
por: Sharma, Manu, et al.
Publicado: (2022)