Cargando…

Protective effects of melatonin on myocardial microvascular endothelial cell injury under hypertensive state by regulating Mst1

BACKGROUND: This study explored the protective effects of melatonin on the hypertensive model in myocardial microvascular endothelial cells. METHODS: Mouse myocardial microvascular endothelial cells were intervened with angiotensin II to establish hypertensive cell model and divided into control, hy...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lingpeng, Wang, Wei, Han, Ruimei, Liu, Yang, Wu, Bin, Luo, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068162/
https://www.ncbi.nlm.nih.gov/pubmed/37005605
http://dx.doi.org/10.1186/s12872-023-03159-1
Descripción
Sumario:BACKGROUND: This study explored the protective effects of melatonin on the hypertensive model in myocardial microvascular endothelial cells. METHODS: Mouse myocardial microvascular endothelial cells were intervened with angiotensin II to establish hypertensive cell model and divided into control, hypertension (HP), hypertension + adenovirus negative control (HP + Ad-NC), hypertension + adenovirus carrying Mst1 (HP + Ad-Mst1), hypertension + melatonin (HP + MT), hypertension + adenovirus negative control + melatonin (HP + Ad-NC + MT), and hypertension + adenovirus carrying Mst1 + melatonin (HP + Ad-Mst1 + MT) groups. Autophagosomes were observed by transmission electron microscope. Mitochondrial membrane potential was detected by JC-1 staining. Apoptosis was detected by flow cytometry. Oxidative stress markers of MDA, SOD and GSH-PX were measured. The expression of LC3 and p62 was detected by immunofluorescence. Expression levels of Mst1, p-Mst1, Beclin1, LC3, and P62 were detected with Western blot. RESULTS: Compared with the control group, the autophagosomes in HP, HP + Ad-Mst1, and HP + Ad-NC groups were significantly reduced. Compared with HP group, the autophagosomes in HP + Ad-Mst1 group were significantly reduced. The apoptosis of HP + MT group was significantly lower than HP group. Compared with HP + Ad-Mst1 group, the apoptosis of HP + Ad-Mst1 + MT group was significantly reduced. The ratio of JC-1 monomer in HP + MT group was significantly lower than HP group. Compared with HP + Ad-Mst1 group, the mitochondrial membrane potential of HP + Ad-Mst1 + MT group was also significantly reduced. MDA content in HP + MT group was significantly reduced, but SOD and GSH-PX activities were significantly increased. Compared with HP + Ad-Mst1 group, MDA content in HP + Ad-Mst1 + MT group was significantly reduced, whereas SOD and GSH-PX activities were increased significantly. Mst1 and p-Mst1 proteins in HP + MT group were significantly reduced. Compared with HP + Ad-Mst1 group, Mst1 and p-Mst1 in HP + Ad-Mst1 + MT group were reduced. P62 level was significantly decreased, while Beclin1 and LC3II levels were significantly increased. P62 in HP + MT group was significantly reduced, while Beclin1 and LC3II were significantly increased. Compared with HP + Ad-Mst1 group, P62 in HP + Ad-Mst1 + MT group was significantly reduced, but Beclin1 and LC3II were significantly increased. CONCLUSION: Melatonin may inhibit apoptosis, increase mitochondrial membrane potential, and increase autophagy of myocardial microvascular endothelial cells under hypertensive state via inhibiting Mst1 expression, thereby exerting myocardial protective effect. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-023-03159-1.