Cargando…

Programming CAR T Cell Tumor Recognition: Tuned Antigen Sensing and Logic Gating

The success of chimeric antigen receptor (CAR) T cells targeting B-cell malignancies propelled the field of synthetic immunology and raised hopes to treat solid tumors in a similar fashion. Antigen escape and the paucity of tumor-restricted CAR targets are recognized challenges to fulfilling this pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamieh, Mohamad, Mansilla-Soto, Jorge, Rivière, Isabelle, Sadelain, Michel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068450/
https://www.ncbi.nlm.nih.gov/pubmed/36961206
http://dx.doi.org/10.1158/2159-8290.CD-23-0101
Descripción
Sumario:The success of chimeric antigen receptor (CAR) T cells targeting B-cell malignancies propelled the field of synthetic immunology and raised hopes to treat solid tumors in a similar fashion. Antigen escape and the paucity of tumor-restricted CAR targets are recognized challenges to fulfilling this prospect. Recent advances in CAR T cell engineering extend the toolbox of chimeric receptors available to calibrate antigen sensitivity and combine receptors to create adapted tumor-sensing T cells. Emerging engineering strategies to lower the threshold for effective antigen recognition, when needed, and enable composite antigen recognition hold great promise for overcoming tumor heterogeneity and curbing off-tumor toxicities. SIGNIFICANCE: Improving the clinical efficacy of CAR T cell therapies will require engineering T cells that overcome heterogeneous and low-abundance target expression while minimizing reactivity to normal tissues. Recent advances in CAR design and logic gating are poised to extend the success of CAR T cell therapies beyond B-cell malignancies.