Cargando…

Tensor- and high-resolution fiber tractography for the delineation of the optic radiation and corticospinal tract in the proximity of intracerebral lesions: a reproducibility and repeatability study

PURPOSE: Fiber tracking (FT) is used in neurosurgical planning for the resection of lesions in proximity to fiber pathways, as it contributes to a substantial amelioration of postoperative neurological impairments. Currently, diffusion-tensor imaging (DTI)-based FT is the most frequently used techni...

Descripción completa

Detalles Bibliográficos
Autores principales: Lenga, Pavlina, Scherer, Moritz, Neher, Peter, Jesser, Jessica, Pflüger, Irada, Maier-Hein, Klaus, Unterberg, Andreas W., Becker, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068641/
https://www.ncbi.nlm.nih.gov/pubmed/36862216
http://dx.doi.org/10.1007/s00701-023-05540-7
Descripción
Sumario:PURPOSE: Fiber tracking (FT) is used in neurosurgical planning for the resection of lesions in proximity to fiber pathways, as it contributes to a substantial amelioration of postoperative neurological impairments. Currently, diffusion-tensor imaging (DTI)-based FT is the most frequently used technique; however, sophisticated techniques such as Q-ball (QBI) for high-resolution FT (HRFT) have suggested favorable results. Little is known about the reproducibility of both techniques in the clinical setting. Therefore, this study aimed to examine the intra- and interrater agreement for the depiction of white matter pathways such as the corticospinal tract (CST) and the optic radiation (OR). METHODS: Nineteen patients with eloquent lesions in the proximity of the OR or CST were prospectively enrolled. Two different raters independently reconstructed the fiber bundles by applying probabilistic DTI- and QBI-FT. Interrater agreement was evaluated from the comparison between results obtained by the two raters on the same data set acquired in two independent iterations at different timepoints using the Dice Similarity Coefficient (DSC) and the Jaccard Coefficient (JC). Likewise, intrarater agreement was determined for each rater comparing individual results. RESULTS: DSC values showed substantial intrarater agreement based on DTI-FT (rater 1: mean 0.77 (0.68–0.85); rater 2: mean 0.75 (0.64–0.81); p = 0.673); while an excellent agreement was observed after the deployment of QBI-based FT (rater 1: mean 0.86 (0.78–0.98); rater 2: mean 0.80 (0.72–0.91); p = 0.693). In contrast, fair agreement was observed between both measures for the repeatability of the OR of each rater based on DTI-FT (rater 1: mean 0.36 (0.26–0.77); rater 2: mean 0.40 (0.27–0.79), p = 0.546). A substantial agreement between the measures was noted by applying QBI-FT (rater 1: mean 0.67 (0.44–0.78); rater 2: mean 0.62 (0.32–0.70), 0.665). The interrater agreement was moderate for the reproducibility of the CST and OR for both DSC and JC based on DTI-FT (DSC and JC ≥ 0.40); while a substantial interrater agreement was noted for DSC after applying QBI-based FT for the delineation of both fiber tracts (DSC > 0.6). CONCLUSIONS: Our findings suggest that QBI-based FT might be a more robust tool for the visualization of the OR and CST adjacent to intracerebral lesions compared with the common standard DTI-FT. For neurosurgical planning during the daily workflow, QBI appears to be feasible and less operator-dependent.