Cargando…
Photodissociation Spectroscopy and Photofragment Imaging to Probe Fe(+)(Benzene)(1,2) Dissociation Energies
[Image: see text] Tunable laser photodissociation spectroscopy measurements and photofragment imaging experiments are employed to investigate the dissociation energy of the Fe(+)(benzene) ion–molecule complex. Additional spectroscopy measurements determine the dissociation energy of Fe(+)(benzene)(2...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068738/ https://www.ncbi.nlm.nih.gov/pubmed/36920853 http://dx.doi.org/10.1021/acs.jpca.3c00735 |
Sumario: | [Image: see text] Tunable laser photodissociation spectroscopy measurements and photofragment imaging experiments are employed to investigate the dissociation energy of the Fe(+)(benzene) ion–molecule complex. Additional spectroscopy measurements determine the dissociation energy of Fe(+)(benzene)(2). The dissociation energies for Fe(+)(benzene) determined from the threshold for the appearance of the Fe(+) fragment (48.4 ± 0.2 kcal/mol) and photofragment imaging (≤49.3 ± 3.2 kcal/mol) agree nicely with each other and with the value determined previously by collision-induced dissociation (49.5 ± 2.9 kcal/mol), but they are lower than the values produced by computational chemistry at the density functional theory level using different functionals recommended for transition-metal chemistry. The threshold measurement for Fe(+)(benzene)(2) (43.0 ± 0.2 kcal/mol) likewise agrees with the value (44.7 ± 3.8 kcal/mol) from previous collision-induced dissociation measurements. |
---|