Cargando…

Downregulation of circ-YES1 suppresses NSCLC migration and proliferation through the miR-142-3p–HMGB1 axis

BACKGROUND: Circular RNAs (circRNAs) are a new family of abundant regulatory RNAs with roles in various types of cancer. While the hsa_circ_0046701 (circ-YES1) function in non-small cell lung cancer (NSCLC) is unclear. METHODS: Circ-YES1 expression in normal pulmonary epithelial and NSCLC cells was...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Mingming, Wang, Yan, Zhou, Dawei, Liu, Wanchao, Han, Ruodong, Chi, Yongbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069124/
https://www.ncbi.nlm.nih.gov/pubmed/37009887
http://dx.doi.org/10.1186/s12931-023-02378-6
Descripción
Sumario:BACKGROUND: Circular RNAs (circRNAs) are a new family of abundant regulatory RNAs with roles in various types of cancer. While the hsa_circ_0046701 (circ-YES1) function in non-small cell lung cancer (NSCLC) is unclear. METHODS: Circ-YES1 expression in normal pulmonary epithelial and NSCLC cells was examined. The small interfering RNA for circ-YES1 was prepared, cell proliferation and migration were assessed. Tumorigenesis in nude mice was assayed to validate the role of circ-YES1. Bioinformatics analyses and luciferase reporter assays were utilized to identify downstream targets of circ-YES1. RESULTS: Compared to normal pulmonary epithelial cells, the circ-YES1 expression increased in NSCLC cells, and cell proliferation and migration were suppressed after circ-YES1 knockdown. Both high mobility group protein B1 (HMGB1) and miR-142-3p were found to be downstream targets of circ-YES1, and miR-142-3p inhibition and HMGB1 overexpression reversed the effects of circ-YES1 knockdown on cell proliferation and migration. Similarly, HMGB1 overexpression reversed the miR-142-3p overexpression effects on these two processes. The imaging experiment results revealed that circ-YES1 knockdown impeded tumor development and metastasis in a nude mouse xenograft model. CONCLUSION: Taken together, our results show that circ-YES1 promotes tumor development through the miR-142-3p–HMGB1 axis and support the development of circ-YES1 probability as a new therapeutic NSCLC target.