Cargando…
Complex hierarchical structures in single-cell genomics data unveiled by deep hyperbolic manifold learning
With the advances in single-cell sequencing techniques, numerous analytical methods have been developed for delineating cell development. However, most are based on Euclidean space, which would distort the complex hierarchical structure of cell differentiation. Recently, methods acting on hyperbolic...
Autores principales: | Tian, Tian, Zhong, Cheng, Lin, Xiang, Wei, Zhi, Hakonarson, Hakon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069463/ https://www.ncbi.nlm.nih.gov/pubmed/36849204 http://dx.doi.org/10.1101/gr.277068.122 |
Ejemplares similares
-
Foundations of hyperbolic manifolds
por: Ratcliffe, John G
Publicado: (2006) -
Foundations of hyperbolic manifolds
por: Ratcliffe, J G
Publicado: (1994) -
Foundations of hyperbolic manifolds /
por: Ratcliffe, John G., 1948-
Publicado: (2006) -
Foundations of hyperbolic manifolds
por: Ratcliffe, John G
Publicado: (2019) -
Clustering of single-cell multi-omics data with a multimodal deep learning method
por: Lin, Xiang, et al.
Publicado: (2022)