Cargando…

Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation

OBJECTIVE: The purpose of this study was to retrospectively collect the relevant clinical data of lumbar disc herniation (LDH) patients treated with the tubular microdiscectomy (TMD) technique, and to develop and validate a prediction model for predicting the treatment improvement rate of TMD in LDH...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xinyao, Lin, Fabin, Xu, Xiongjie, Chen, Chunmei, Wang, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069648/
https://www.ncbi.nlm.nih.gov/pubmed/37021092
http://dx.doi.org/10.3389/fsurg.2023.1024302
_version_ 1785018889083551744
author Chen, Xinyao
Lin, Fabin
Xu, Xiongjie
Chen, Chunmei
Wang, Rui
author_facet Chen, Xinyao
Lin, Fabin
Xu, Xiongjie
Chen, Chunmei
Wang, Rui
author_sort Chen, Xinyao
collection PubMed
description OBJECTIVE: The purpose of this study was to retrospectively collect the relevant clinical data of lumbar disc herniation (LDH) patients treated with the tubular microdiscectomy (TMD) technique, and to develop and validate a prediction model for predicting the treatment improvement rate of TMD in LDH patients at 1 year after surgery. METHODS: Relevant clinical data of LDH patients treated with the TMD technology were retrospectively collected. The follow-up period was 1 year after surgery. A total of 43 possible predictors were included, and the treatment improvement rate of the Japanese Orthopedic Association (JOA) score of the lumbar spine at 1 year after TMD was used as an outcome measure. The least absolute shrinkage and selection operator (LASSO) method was used to screen out the most important predictors affecting the outcome indicators. In addition, logistic regression was used to construct the model, and a nomogram of the prediction model was drawn. RESULTS: A total of 273 patients with LDH were included in this study. Age, occupational factors, osteoporosis, Pfirrmann classification of intervertebral disc degeneration, and preoperative Oswestry Disability Index (ODI) were screened out from the 43 possible predictors based on LASSO regression. A total of 5 predictors were included while drawing a nomogram of the model. The area under the ROC curve (AUC) value of the model was 0.795. CONCLUSIONS: In this study, we successfully developed a good clinical prediction model that can predict the effect of TMD for LDH. A web calculator was designed on the basis of the model (https://fabinlin.shinyapps.io/DynNomapp/).
format Online
Article
Text
id pubmed-10069648
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-100696482023-04-04 Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation Chen, Xinyao Lin, Fabin Xu, Xiongjie Chen, Chunmei Wang, Rui Front Surg Surgery OBJECTIVE: The purpose of this study was to retrospectively collect the relevant clinical data of lumbar disc herniation (LDH) patients treated with the tubular microdiscectomy (TMD) technique, and to develop and validate a prediction model for predicting the treatment improvement rate of TMD in LDH patients at 1 year after surgery. METHODS: Relevant clinical data of LDH patients treated with the TMD technology were retrospectively collected. The follow-up period was 1 year after surgery. A total of 43 possible predictors were included, and the treatment improvement rate of the Japanese Orthopedic Association (JOA) score of the lumbar spine at 1 year after TMD was used as an outcome measure. The least absolute shrinkage and selection operator (LASSO) method was used to screen out the most important predictors affecting the outcome indicators. In addition, logistic regression was used to construct the model, and a nomogram of the prediction model was drawn. RESULTS: A total of 273 patients with LDH were included in this study. Age, occupational factors, osteoporosis, Pfirrmann classification of intervertebral disc degeneration, and preoperative Oswestry Disability Index (ODI) were screened out from the 43 possible predictors based on LASSO regression. A total of 5 predictors were included while drawing a nomogram of the model. The area under the ROC curve (AUC) value of the model was 0.795. CONCLUSIONS: In this study, we successfully developed a good clinical prediction model that can predict the effect of TMD for LDH. A web calculator was designed on the basis of the model (https://fabinlin.shinyapps.io/DynNomapp/). Frontiers Media S.A. 2023-03-20 /pmc/articles/PMC10069648/ /pubmed/37021092 http://dx.doi.org/10.3389/fsurg.2023.1024302 Text en © 2023 Chen, Lin, Xu, Chen and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Surgery
Chen, Xinyao
Lin, Fabin
Xu, Xiongjie
Chen, Chunmei
Wang, Rui
Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation
title Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation
title_full Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation
title_fullStr Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation
title_full_unstemmed Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation
title_short Development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation
title_sort development, validation, and visualization of a web-based nomogram to predict the effect of tubular microdiscectomy for lumbar disc herniation
topic Surgery
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069648/
https://www.ncbi.nlm.nih.gov/pubmed/37021092
http://dx.doi.org/10.3389/fsurg.2023.1024302
work_keys_str_mv AT chenxinyao developmentvalidationandvisualizationofawebbasednomogramtopredicttheeffectoftubularmicrodiscectomyforlumbardischerniation
AT linfabin developmentvalidationandvisualizationofawebbasednomogramtopredicttheeffectoftubularmicrodiscectomyforlumbardischerniation
AT xuxiongjie developmentvalidationandvisualizationofawebbasednomogramtopredicttheeffectoftubularmicrodiscectomyforlumbardischerniation
AT chenchunmei developmentvalidationandvisualizationofawebbasednomogramtopredicttheeffectoftubularmicrodiscectomyforlumbardischerniation
AT wangrui developmentvalidationandvisualizationofawebbasednomogramtopredicttheeffectoftubularmicrodiscectomyforlumbardischerniation