Cargando…
Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray
[Image: see text] The photosynthetic apparatus of plants and bacteria combine atomically precise pigment–protein complexes with dynamic membrane architectures to control energy transfer on the 10–100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069740/ https://www.ncbi.nlm.nih.gov/pubmed/36947483 http://dx.doi.org/10.1021/acs.jpclett.3c00086 |
_version_ | 1785018908094234624 |
---|---|
author | Varvelo, Leonel Lynd, Jacob K. Citty, Brian Kühn, Oliver Raccah, Doran I. G. B. |
author_facet | Varvelo, Leonel Lynd, Jacob K. Citty, Brian Kühn, Oliver Raccah, Doran I. G. B. |
author_sort | Varvelo, Leonel |
collection | PubMed |
description | [Image: see text] The photosynthetic apparatus of plants and bacteria combine atomically precise pigment–protein complexes with dynamic membrane architectures to control energy transfer on the 10–100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to enhance exciton transport, though the influence of artificial packing on the excited-state dynamics in these biohybrid materials is not fully understood. Here, we use the adaptive hierarchy of pure states (adHOPS) to perform a formally exact simulation of excitation energy transfer within artificial aggregates of light-harvesting complex 2 (LH2) with a range of packing densities. We find that LH2 aggregates support a remarkable exciton diffusion length ranging from 100 nm at a biological packing density to 300 nm at the densest packing previously suggested in an artificial aggregate. The unprecedented scale of these formally exact calculations also underscores the efficiency with which adHOPS simulates excited-state processes in molecular materials. |
format | Online Article Text |
id | pubmed-10069740 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-100697402023-04-04 Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray Varvelo, Leonel Lynd, Jacob K. Citty, Brian Kühn, Oliver Raccah, Doran I. G. B. J Phys Chem Lett [Image: see text] The photosynthetic apparatus of plants and bacteria combine atomically precise pigment–protein complexes with dynamic membrane architectures to control energy transfer on the 10–100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to enhance exciton transport, though the influence of artificial packing on the excited-state dynamics in these biohybrid materials is not fully understood. Here, we use the adaptive hierarchy of pure states (adHOPS) to perform a formally exact simulation of excitation energy transfer within artificial aggregates of light-harvesting complex 2 (LH2) with a range of packing densities. We find that LH2 aggregates support a remarkable exciton diffusion length ranging from 100 nm at a biological packing density to 300 nm at the densest packing previously suggested in an artificial aggregate. The unprecedented scale of these formally exact calculations also underscores the efficiency with which adHOPS simulates excited-state processes in molecular materials. American Chemical Society 2023-03-22 /pmc/articles/PMC10069740/ /pubmed/36947483 http://dx.doi.org/10.1021/acs.jpclett.3c00086 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Varvelo, Leonel Lynd, Jacob K. Citty, Brian Kühn, Oliver Raccah, Doran I. G. B. Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray |
title | Formally Exact
Simulations of Mesoscale Exciton Diffusion
in a Light-Harvesting 2 Antenna Nanoarray |
title_full | Formally Exact
Simulations of Mesoscale Exciton Diffusion
in a Light-Harvesting 2 Antenna Nanoarray |
title_fullStr | Formally Exact
Simulations of Mesoscale Exciton Diffusion
in a Light-Harvesting 2 Antenna Nanoarray |
title_full_unstemmed | Formally Exact
Simulations of Mesoscale Exciton Diffusion
in a Light-Harvesting 2 Antenna Nanoarray |
title_short | Formally Exact
Simulations of Mesoscale Exciton Diffusion
in a Light-Harvesting 2 Antenna Nanoarray |
title_sort | formally exact
simulations of mesoscale exciton diffusion
in a light-harvesting 2 antenna nanoarray |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069740/ https://www.ncbi.nlm.nih.gov/pubmed/36947483 http://dx.doi.org/10.1021/acs.jpclett.3c00086 |
work_keys_str_mv | AT varveloleonel formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray AT lyndjacobk formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray AT cittybrian formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray AT kuhnoliver formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray AT raccahdoranigb formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray |