Cargando…

Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray

[Image: see text] The photosynthetic apparatus of plants and bacteria combine atomically precise pigment–protein complexes with dynamic membrane architectures to control energy transfer on the 10–100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to e...

Descripción completa

Detalles Bibliográficos
Autores principales: Varvelo, Leonel, Lynd, Jacob K., Citty, Brian, Kühn, Oliver, Raccah, Doran I. G. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069740/
https://www.ncbi.nlm.nih.gov/pubmed/36947483
http://dx.doi.org/10.1021/acs.jpclett.3c00086
_version_ 1785018908094234624
author Varvelo, Leonel
Lynd, Jacob K.
Citty, Brian
Kühn, Oliver
Raccah, Doran I. G. B.
author_facet Varvelo, Leonel
Lynd, Jacob K.
Citty, Brian
Kühn, Oliver
Raccah, Doran I. G. B.
author_sort Varvelo, Leonel
collection PubMed
description [Image: see text] The photosynthetic apparatus of plants and bacteria combine atomically precise pigment–protein complexes with dynamic membrane architectures to control energy transfer on the 10–100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to enhance exciton transport, though the influence of artificial packing on the excited-state dynamics in these biohybrid materials is not fully understood. Here, we use the adaptive hierarchy of pure states (adHOPS) to perform a formally exact simulation of excitation energy transfer within artificial aggregates of light-harvesting complex 2 (LH2) with a range of packing densities. We find that LH2 aggregates support a remarkable exciton diffusion length ranging from 100 nm at a biological packing density to 300 nm at the densest packing previously suggested in an artificial aggregate. The unprecedented scale of these formally exact calculations also underscores the efficiency with which adHOPS simulates excited-state processes in molecular materials.
format Online
Article
Text
id pubmed-10069740
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-100697402023-04-04 Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray Varvelo, Leonel Lynd, Jacob K. Citty, Brian Kühn, Oliver Raccah, Doran I. G. B. J Phys Chem Lett [Image: see text] The photosynthetic apparatus of plants and bacteria combine atomically precise pigment–protein complexes with dynamic membrane architectures to control energy transfer on the 10–100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to enhance exciton transport, though the influence of artificial packing on the excited-state dynamics in these biohybrid materials is not fully understood. Here, we use the adaptive hierarchy of pure states (adHOPS) to perform a formally exact simulation of excitation energy transfer within artificial aggregates of light-harvesting complex 2 (LH2) with a range of packing densities. We find that LH2 aggregates support a remarkable exciton diffusion length ranging from 100 nm at a biological packing density to 300 nm at the densest packing previously suggested in an artificial aggregate. The unprecedented scale of these formally exact calculations also underscores the efficiency with which adHOPS simulates excited-state processes in molecular materials. American Chemical Society 2023-03-22 /pmc/articles/PMC10069740/ /pubmed/36947483 http://dx.doi.org/10.1021/acs.jpclett.3c00086 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Varvelo, Leonel
Lynd, Jacob K.
Citty, Brian
Kühn, Oliver
Raccah, Doran I. G. B.
Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray
title Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray
title_full Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray
title_fullStr Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray
title_full_unstemmed Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray
title_short Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray
title_sort formally exact simulations of mesoscale exciton diffusion in a light-harvesting 2 antenna nanoarray
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069740/
https://www.ncbi.nlm.nih.gov/pubmed/36947483
http://dx.doi.org/10.1021/acs.jpclett.3c00086
work_keys_str_mv AT varveloleonel formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray
AT lyndjacobk formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray
AT cittybrian formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray
AT kuhnoliver formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray
AT raccahdoranigb formallyexactsimulationsofmesoscaleexcitondiffusioninalightharvesting2antennananoarray